
DCN Next Generation
Open Interface Release 4.1

en Interface Manual

DCN Next Generation Open Interface Release 4.1 en | 2

Bosch Security Systems | 2013 March

Table of Contents

1. Introduction ... 10
1.1 Purpose ... 10
1.2 Scope .. 10
1.3 Definitions, Acronyms and Abbreviations.. 10
1.4 References .. 12

2. General description... 13
2.1 System setup .. 13

2.1.1 Use of TCP/IP port... 13
2.1.2 Requirements .. 13
2.1.3 Hardware connection ... 14

2.1.3.1 CCU .. 14
2.2 Message format .. 14

2.2.1 Conventions ... 14
2.2.2 DCN-NG message layout .. 14

2.2.2.1 Format of type MDSC_REMOTEPROCEDURE_REQ 14
2.2.2.2 Format of type MDSC_REMOTEPROCEDURE_RSP 15
2.2.2.3 Format of type MDSC_NOTIFY ... 15

2.2.3 Ethernet message layout ... 16
2.2.3.1 Format of type MESSAGETYPE_OIP_KeepAlive .. 17
2.2.3.2 Format of type MESSAGETYPE_OIP_ResponseProtocolError 17
2.2.3.3 Format of type MESSAGETYPE_OIP_Dcn.. 18

2.3 Protocol description... 19
2.3.1 Ethernet Protocol Description .. 19

2.3.1.1 Open interface protocol .. 19
2.3.1.1.1 Set-up a connection .. 19
2.3.1.1.2 Heartbeat... 19
2.3.1.1.3 Timing values .. 19

2.3.2 Remote function execution .. 19
2.3.3 Control flow with multiple remote controller’s .. 20

2.4 Remote Functions ... 20
2.4.1 Remote function handling .. 20
2.4.2 Simultaneous operation from Control PC and Remote Controller 21

3. SYSTEM CONFIGURATION AND SYSTEM INSTALLTION .. 22
3.1 Introduction ... 22

3.1.1 Remote functions ... 22
3.1.1.1 Remote function item explanation .. 22

3.1.2 System Modes ... 23
3.2 System Configuration (SC) Functions ... 23
3.3 Introduction ... 23

3.3.1 SC_C_CHECK_LINK ... 24
3.3.2 SC_C_START_APP .. 24
3.3.3 SC_C_STOP_APP .. 24
3.3.4 SC_C_GET_CCU_VERSIONINFO ... 25
3.3.5 SC_C_GET_CCU_CONFIG <deprecated> ... 26
3.3.6 SC_C_GET_CCU_CONFIG_PROPERTY .. 27
3.3.7 SC_C_REQ_SERIAL_NR ... 29
3.3.8 SC_C_GET_SLAVE_NODES ... 29
3.3.9 SC_C_GET_ UNIT_IDS .. 30
3.3.10 SC_C _BATTERY_STATUS_REQ ... 31
3.3.11 SC_C_BATTERY_INFO_REQ .. 31
3.3.12 SC_C_SIGNAL_STATUS_REQ .. 32
3.3.13 SC_C_SIGNAL_QUALITY_REQ ... 32
3.3.14 SC_C_UNIT_SIGNAL_QUALITY_REQ .. 33
3.3.15 SC_C_LOW_BATTERY_REQ .. 33
3.3.16 SC_C_GET_ENCRYPTION_ENABLED ... 33
3.3.17 SC_C_SET_ENCRYPTION_ENABLED .. 34

DCN Next Generation Open Interface Release 4.1 en | 3

Bosch Security Systems | 2013 March

3.4 System Configuration (SC) notifications ... 34
3.4.1 Introduction .. 34

3.4.1.1 Update Notification item explanation .. 34
3.4.1.2 Unit/user event relations ... 34

3.4.2 SC_C_CCU_REBOOT .. 37
3.4.3 SC_C_CONNECT_UNIT ... 37
3.4.4 SC_C_DISCONNECT_UNIT ... 37
3.4.5 SC_C_CONNECT_SLAVE_CCU .. 37
3.4.6 SC_C_DISCONNECT_SLAVE_CCU .. 38
3.4.7 SC_C_CCU_MODE_CHANGE ... 38
3.4.8 SC_C _SERIAL_NR .. 39
3.4.9 SC_C_BATTERY_STATUS .. 39
3.4.10 SC_C_BATTERY_INFO_SERIAL ... 39
3.4.11 SC_C_BATTERY_INFO_COND ... 40
3.4.12 SC_C_SIGNAL_STATUS .. 40
3.4.13 SC_C_SIGNAL_QUALITY ... 41
3.4.14 SC_C_UNIT_SIGNAL_QUALITY .. 41
3.4.15 SC_C_LOW_BATTERY .. 41
3.4.16 SC_C_ENCRYPTION_ENABLED ... 41

3.5 System Installation (SI) functions .. 42
3.5.1 Introduction .. 42
3.5.2 SI_C_START_INSTALL .. 42
3.5.3 SI_C_STOP_INSTALL .. 43
3.5.4 SI_C_SELECT_UNIT .. 43
3.5.5 SI_C_SET_MASTER_VOL .. 44
3.5.6 SI_C_SET_EXT_CONTACT ... 45
3.5.7 SI_C_GET_EXT_CONTACT ... 45
3.5.8 SI_C_SET_MICROPHONE_GAIN .. 45
3.5.9 SI_C_GET_MICROPHONE_GAIN .. 46
3.5.10 SI_C_RESET_MICROPHONE_GAIN ... 47
3.5.11 SI_C_DEINITIALIZE_ALL .. 47
3.5.12 SI_C_GET_OPERATION_MODE ... 47
3.5.13 SI_C_SET_OPERATION_MODE .. 48
3.5.14 SI_C_UNSUBSCRIBE_REQ ... 49
3.5.15 SI_C_GET_WAP_SETTINGS ... 49
3.5.16 SI_C_SET_WAP_SETTINGS ... 50
3.5.17 SI_C_GET_WIRELESS_SETTINGS .. 51
3.5.18 SI_C_SET_WIRELESS_SETTINGS ... 51
3.5.19 SI_C_GET_NETWORK_MODE .. 52
3.5.20 SI_C_SET_NETWORK_MODE .. 52
3.5.21 SI_C_START_MON_SI ... 53
3.5.22 SI_C_STOP_MON_SI ... 53

3.6 System Installation (SI) notifications ... 53
3.6.1 Introduction .. 53

3.6.1.1 Unit/user event relations ... 54
3.6.2 SI_C_REGISTER_UNIT .. 54
3.6.3 SI_C_MICROPHONE_GAIN ... 54
3.6.4 SI_C_MICROPHONE_GAIN _ RESET ... 55
3.6.5 SI_C_WAP_SETTINGS .. 55
3.6.6 SI_C_WIRELESS_SETTINGS .. 56
3.6.7 SI_C_NETWORK_MODE ... 56

4. Delegate Database .. 57
4.1 Introduction ... 57
4.2 Remote Functions ... 57

4.2.1 DB_C_START_APP .. 57
4.2.2 DB_C_STOP_APP .. 57
4.2.3 DB_C_MAINT_CCU .. 58
4.2.4 DB_C_DOWNLOAD_CCU .. 60
4.2.5 DB_C_CLEAR_CCU ... 60
4.2.6 DB_C_CCU_APPLY_ONE .. 61

DCN Next Generation Open Interface Release 4.1 en | 4

Bosch Security Systems | 2013 March

5. Microphone management ... 62
5.1 Introduction ... 62

5.1.1 Remote Microphone Management Control .. 62
5.1.2 Microphone List and Mode Management .. 62

5.2 Remote Functions ... 65
5.2.1 Introduction .. 65

5.2.1.1 Preconditions .. 65
5.2.1.2 Remote function item explanation .. 65

5.2.2 MM General functions .. 66
5.2.2.1 MM_C_START_MM ... 66
5.2.2.2 MM_C_STOP_MM ... 66
5.2.2.3 MM_C_START_MON_MM ... 67
5.2.2.4 MM_C_STOP_MON_MM ... 67
5.2.2.5 MM_C_SET_MIC_OPER_MODE .. 68
5.2.2.6 MM_C_SET_ACTIVE_MICS .. 68
5.2.2.7 MM_C_GET_SETTINGS ... 69
5.2.2.8 MM_C_SET_SETTINGS .. 70

5.2.3 MM Speaker list functions.. 71
5.2.3.1 MM_C_SET_MICRO_ON_OFF ... 71
5.2.3.2 MM_C_SPK_APPEND ... 72
5.2.3.3 MM_C_SPK_REMOVE .. 72
5.2.3.4 MM_C_SPK_CLEAR .. 73
5.2.3.5 MM_C_SPK_GET .. 73

5.2.4 MM Comment Speaker list functions ... 74
5.2.4.1 MM_C_CS_REMOVE .. 74
5.2.4.2 MM_C_CS_GET... 74

5.2.5 MM Notebook list functions.. 75
5.2.5.1 MM_C_NBK_REMOVE .. 75
5.2.5.2 MM_C_NBK_CLEAR .. 75
5.2.5.3 MM_C_NBK_GET .. 75
5.2.5.4 MM_C_NBK_SET ... 76

5.2.6 MM Request to Speak list functions .. 77
5.2.6.1 MM_C_RTS_APPEND ... 78
5.2.6.2 MM_C_RTS_REMOVE .. 78
5.2.6.3 MM_C_RTS_CLEAR .. 79
5.2.6.4 MM_C_RTS_GET .. 79
5.2.6.5 MM_C_RTS_SET ... 80
5.2.6.6 MM_C_SHIFT... 80

5.2.7 MM Comment Request list functions ... 81
5.2.7.1 MM_C_CR_REMOVE .. 81
5.2.7.2 MM_C_CR_GET .. 82
5.2.7.3 MM_C_SHIFT_CR ... 82

5.2.8 MM Speechtime functions ... 83
5.2.8.1 MM_C_SET_SPEECHTIME_SETTINGS .. 83
5.2.8.2 MM_C_LAST_MINUTE_WARNING .. 84
5.2.8.3 MM_C_TIME_FINISHED_WARNING .. 84

5.3 Update Notifications .. 84
5.3.1 Introduction .. 84

5.3.1.1 Update notification item explanation... 84
5.3.1.2 Unit/user event relations ... 85

5.3.2 MM General notifications ... 87
5.3.2.1 MM_C_SET_MIC_OPER_MODE_ON_PC .. 87
5.3.2.2 MM_C_SET_ACTIVE_MICS_ON_PC ... 87
5.3.2.3 MM_C_SET_SETTINGS_ON_PC ... 87

5.3.3 MM Speaker list notifications ... 87
5.3.3.1 MM_C_MICRO_ON_OFF .. 87
5.3.3.2 MM_C_NR_CHAIR_MICS_ON .. 88
5.3.3.3 MM_C_SPK_SET_ON_PC .. 88
5.3.3.4 MM_C_SPK_CLEAR_ON_PC ... 88
5.3.3.5 MM_C_SPK_APPEND_ON_PC ... 89
5.3.3.6 MM_C_SPK_REMOVE_ON_PC .. 89

DCN Next Generation Open Interface Release 4.1 en | 5

Bosch Security Systems | 2013 March

5.3.3.7 MM_C_SPK_INSERT_ON_PC .. 89
5.3.3.8 MM_C_SPK_REPLACE_ON_PC ... 89

5.3.4 MM Comment Speaker list notifications .. 90
5.3.4.1 MM_C_CS_CLEAR_ON_PC .. 90
5.3.4.2 MM_C_CS_ADD_ON_PC .. 90
5.3.4.3 MM_C_CS_REMOVE_ON_PC .. 90

5.3.5 MM Notebook list notifications ... 90
5.3.5.1 MM_C_NBK_REMOVE_ON_PC .. 90
5.3.5.2 MM_C_NBK_SET_ON_PC .. 91

5.3.6 MM Request to Speak list notifications .. 91
5.3.6.1 MM_C_RTS_SET_ON_PC .. 91
5.3.6.2 MM_C_RTS_CLEAR_ON_PC ... 91
5.3.6.3 MM_C_RTS_REMOVE_ON_PC .. 91
5.3.6.4 MM_C_RTS_FIRST_ON_PC ... 91
5.3.6.5 MM_C_RTS_INSERT_ON_PC .. 92
5.3.6.6 MM_C_RTS_REPLACE_ON_PC... 92

5.3.7 MM Comment Request list notifications .. 92
5.3.7.1 MM_C_CR_CLEAR_ON_PC ... 92
5.3.7.2 MM_C_CR_ADD_ON_PC .. 92
5.3.7.3 MM_C_CR_REMOVE_ON_PC .. 93
5.3.7.4 MM_C_CR_REPLACE_ON_PC ... 93

5.3.8 MM Speechtime notifications ... 93
5.3.8.1 MM_C_TIMER_ON_OFF ... 93

6. Camera Control ... 94
6.1 Introduction ... 94

6.1.1 Remote Camera Control Control ... 94
6.2 Remote Functions ... 94

6.2.1 Introduction .. 94
6.2.1.1 Remote function item explanation .. 95

6.2.2 CC General functions .. 95
6.2.2.1 CC_C_START_CAMERA_APP ... 95
6.2.2.2 CC_C_STOP_CAMERA_APP ... 95
6.2.2.3 CC_C_SET_CAMERA_ACTIVITY ... 96
6.2.2.4 CC_C_SET_GLOBAL_SETTINGS .. 96
6.2.2.5 CC_C_GET_GLOBAL_SETTINGS .. 98
6.2.2.6 CC_C_SET_CAMERA_ASSIGNMENT ... 98
6.2.2.7 CC_C_CLEAR_CAMERA_ASSIGNMENTS .. 100
6.2.2.8 CC_C_SET_CAMERA_ID .. 100
6.2.2.9 CC_C_CLEAR_CAMERA_IDS .. 101
6.2.2.10 CC_C_SEND_DATA .. 101

6.3 Update Notifications .. 102
6.3.1 Introduction .. 102

6.3.1.1 Update notification item explanation... 102
6.3.1.2 Unit/user event relations ... 103

6.3.2 CC General notifications .. 103
6.3.2.1 CC_C_RECEIVE_DATA .. 103

7. Simultaneous Interpretation .. 104
7.1 Introduction ... 104

7.1.1 Remote Simultaneous Interpretation Control .. 104
7.2 Remote Functions ... 104

7.2.1 Introduction .. 104
7.2.2 Remote function item explanation ... 104
7.2.3 IN General functions .. 105

7.2.3.1 IN_C_SIGNAL_CCU .. 105
7.2.3.2 IN_C_START_IN_APP ... 106
7.2.3.3 IN_C_STOP_IN_APP ... 107
7.2.3.4 IN_C_START_MON_IN ... 107
7.2.3.5 IN_C_STOP_MON_IN ... 108
7.2.3.6 IN_C_DESK_UPDATE ... 108

DCN Next Generation Open Interface Release 4.1 en | 6

Bosch Security Systems | 2013 March

7.2.3.7 IN_C_BOOTH_UPDATE .. 109
7.2.3.8 IN_C_UPDATE_LOCK ... 110
7.2.3.9 IN_C_LOAD_INT_DB ... 110
7.2.3.10 IN_C_CHANNEL_UPDATE.. 112
7.2.3.11 IN_C_DOWNLOAD_LANGLIST .. 113
7.2.3.12 IN_C_SET_FLASH_MIC_ON ... 114
7.2.3.13 IN_C_SET_FLOOR_DIST .. 115
7.2.3.14 IN_C_GET_FLOOR_DIST ... 115
7.2.3.15 IN_C_SET_SPEAKSLOWLY_SIGN .. 115
7.2.3.16 IN_C_GET_SPEAKSLOWLY_SIGN .. 116
7.2.3.17 IN_C_SET_HELP_SIGN .. 116
7.2.3.18 IN_C_GET_HELP_SIGN .. 117
7.2.3.19 IN_C_ASSIGN_UNIT ... 117
7.2.3.20 IN_C_UNASSIGN_UNIT .. 118

7.3 Update Notifications .. 118
7.3.1 Introduction .. 118

7.3.1.1 Update notification item explanation... 118
7.3.1.2 Unit/user event relations ... 120

7.3.2 IN General notifications ... 122
7.3.2.1 IN_C_CHAN_STATUS ... 122
7.3.2.2 IN_C_CCU_CONFIG ... 123
7.3.2.3 IN_C_FLASHING_MIC_ON ... 123
7.3.2.4 IN_C_FLOOR_DISTRIBUTION ... 124
7.3.2.5 IN_C_LANGUAGE_LIST .. 124
7.3.2.6 IN_C_SPEAKSLOWLY_SIGN ... 125
7.3.2.7 IN_C_HELP_SIGN ... 125

8. Parliamentary and Mutli Voting ... 126
8.1 Internal Functioning Voting application ... 126

8.1.1 Voting subject .. 126
8.1.2 Voting kind ... 126
8.1.3 General Voting setting ... 126
8.1.4 Communication settings .. 126

8.1.4.1 Result structure format definition .. 127
8.1.5 Default settings voting application ... 128

8.1.5.1 Standalone settings .. 129
8.1.6 Allowed settings without delegate-database present ... 129

8.2 Remote Functions ... 130
8.2.1 Introduction .. 130

8.2.1.1 Remote function item explanation .. 130
8.2.2 Voting functions ... 130

8.2.2.1 VT_C_START_APP ... 130
8.2.2.2 VT_C_STOP_APP ... 131
8.2.2.3 VT_C_START_VOTING... 132
8.2.2.4 VT_C_STOP_VOTING ... 132
8.2.2.5 VT_C_HOLD_VOTING .. 133
8.2.2.6 VT_C_RESTART_VOTING.. 133
8.2.2.7 VT_C_DOWNLOAD_SUBJECT .. 133
8.2.2.8 VT_C_SET_VOTINGPARAMS .. 134
8.2.2.9 VT_C_SET_GLOBAL_SETTINGS ... 136
8.2.2.10 VT_C_GET_RESULTS .. 138
8.2.2.11 VT_C_GET_ATTENTION_TONE .. 138
8.2.2.12 VT_C_SET_ATTENTION_TONE ... 139
8.2.2.13 VT_C_START_ATTENTION_TONE .. 139

8.3 Update Notifications .. 140
8.3.1 Introduction .. 140
8.3.2 Notification item explanation .. 140

8.3.2.1 Unit/User Event relations .. 140
8.3.3 Voting notifications ... 140

8.3.3.1 VT_C_RESULTSNOTIFY .. 140

DCN Next Generation Open Interface Release 4.1 en | 7

Bosch Security Systems | 2013 March

9. Attendance Registration and Access Control .. 142
9.1 Internal functioning of Attendance registration .. 142

9.1.1 Introduction .. 142
9.1.1.1 Attendance registration ... 142
9.1.1.2 Access Control ... 142
9.1.1.3 Delegate Identification .. 143
9.1.1.4 Combination Attendance and Access .. 143

9.1.2 Functioning with parameters .. 143
9.1.2.1 State definitions .. 143
9.1.2.2 Events definitions ... 144
9.1.2.3 Parameter definitions ... 144
9.1.2.4 Event / state matrix ... 144

9.2 Remote Functions ... 148
9.2.1 Introduction .. 148

9.2.1.1 Remote function item explanation .. 148
9.2.2 Attendance/Access functions .. 148

9.2.2.1 AT_C_START_AT_APP ... 148
9.2.2.2 AT_C_STOP_AT_APP ... 149
9.2.2.3 AT_C_STORE_SETTING .. 149
9.2.2.4 AT_C_ACTIVATE ... 150
9.2.2.5 AT_C_HANDLE_IDENTIFICATION ... 151
9.2.2.6 AT_C_GET_INDIV_REGISTRATION .. 152

9.3 Update Notifications .. 154
9.3.1 Introduction .. 154

9.3.1.1 Preconditions .. 154
9.3.1.2 Notification item explanation... 154

9.3.2 Attendance Registration and Access Control notifications .. 155
9.3.2.1 AT_C_SEND_INDIV_REGISTRATION .. 155
9.3.2.2 AT_C_SEND_TOTAL_REGISTRATION ... 155

10. Text & Status Display for a Remote interface .. 156
10.1 Introduction ... 156

10.1.1 Remote Text & Status Display Control .. 156
10.2 Remote Functions ... 156

10.2.1 Introduction .. 156
10.2.1.1 Remote function item explanation .. 156

10.2.2 LD General functions ... 157
10.2.2.1 LD_C_START_LD_APP ... 157
10.2.2.2 LD_C_STOP_LD_APP ... 157
10.2.2.3 LD_C_STORE_DISPLAY_SETTING ... 158
10.2.2.4 LD_C_CLEAR_DISPLAY_NR .. 159

10.3 Update Notifications .. 160
10.3.1 Introduction .. 160

10.3.1.1 Update notification item explanation... 160
10.3.1.2 Unit/user event relations ... 161

10.3.2 LD General notifications .. 162
10.3.2.1 LD_C_SEND_ANUM_DATA .. 162

11. Message Distribution for a Remote interface ... 163
11.1 Introduction ... 163

11.1.1 Remote Message Distribution Control ... 163
11.2 Remote Functions ... 163

11.2.1 Introduction .. 163
11.2.1.1 Remote function item explanation .. 163

11.2.2 Message Distribution functions .. 164
11.2.2.1 MD_C_START_MON_MD ... 164
11.2.2.2 MD_C_STOP_MON_MD ... 164
11.2.2.3 MD_C_SEND_MESSAGE_TO_UNITS .. 165
11.2.2.4 MD_C_CLEAR_MESSAGE_ON_UNITS ... 166
11.2.2.5 MD_C_AUX_LED_CONTROL ... 166

11.3 Update Notifications .. 167

DCN Next Generation Open Interface Release 4.1 en | 8

Bosch Security Systems | 2013 March

11.3.1 Introduction .. 167
11.3.1.1 Update notification item explanation... 167
11.3.1.2 Unit/user event relations ... 167

11.3.2 MD General Notifications ... 168
11.3.2.1 MD_C_REQ_BUTTON_ON_OFF .. 168

12. Intercom for a Remote interface .. 169
12.1 Introduction ... 169

12.1.1 Remote Intercom Control .. 169
12.2 Remote Functions ... 169

12.2.1 Introduction .. 169
12.2.1.1 Remote function item explanation .. 169

12.2.2 Intercom functions ... 170
12.2.2.1 IC_C_START_IC_APP ... 170
12.2.2.2 IC_C_CLOSE_IC_APP .. 170
12.2.2.3 IC_C_SET_LINKS .. 171
12.2.2.4 IC_C_CLEAR_ LINKS .. 171

12.3 Update Notifications .. 171
12.3.1 Introduction .. 171

12.3.1.1 Update notification item explanation... 171
12.3.1.2 Unit/user event relations ... 172

12.3.2 Intercom notifications ... 172
12.3.2.1 IC_UPD_AVAILABLE_LINES ... 172
12.3.2.2 IC_UPD_OPERATOR_STATE .. 172
12.3.2.3 IC_UPD_CONNECTION_INFO ... 173
12.3.2.4 IC_UPD_INCOMING_CALL ... 173

Appendix A. Protocol, TCP/IP setting ... 174
A.1. TCP/IP port setting DCN-CCU .. 174

Appendix B. Values of the defines .. 175
B.1. Defines sorted on application .. 175
B.2. Defines sorted on alphabet .. 198

Appendix C. Error Codes .. 219

Appendix D. Examples .. 228
D.1. System Configuration .. 228

D.1.1. Assigning seats using global installation .. 228
D.1.2. Replacing defective units during operation .. 229

D.2. Microphone Management .. 230
D.2.1. Microphone Management Control .. 230

D.3. Camera Control ... 232
D.3.1. Controlling CC application .. 232

D.4. Simultaneous Interpretation .. 234
D.4.1. Simultaneous Interpretation Control ... 234

D.5. Voting .. 236
D.5.1. Running a vote round without update notifications .. 237

D.6. Attendance Registration and Access Control .. 240
D.6.1. Using Attendance Registration and Access Control .. 240

D.7. Text & Status Display (LD) .. 243
D.7.1. Controlling LD application .. 243

D.8. Message Distribution ... 244
D.8.1. Sending a Message ... 245

D.9. Intercom .. 247
D.9.1. Intercom without update notifications ... 247

Appendix E. Open interface changes in DcnNg 4.0 ... 250
E.1. Changes with respect to DcnNg 3.1 .. 250
E.2. Changes with respect to DcnNg 2.68 .. 251

DCN Next Generation Open Interface Release 4.1 en | 9

Bosch Security Systems | 2013 March

DCN Next Generation Open Interface Release 4.1 en | 10

Bosch Security Systems | 2013 March

1. INTRODUCTION

1.1 Purpose

The purpose of this document is to describe the general remote interface (Open Interface)
aspects for any application to be remotely controlled on the CCU by third party software.

1.2 Scope

This document describes the remote interface. It is meant for developers who want to use this
remote interface to control applications present in the CCU.

The Open Interface must be licensed (LBB4187/00). Use the ‘Download and Licensing Tool’,
to enable the Open Interface. This tool is present on the DVD delivered the DCN conference
system.

1.3 Definitions, Acronyms and Abbreviations
ACK Acknowledge (of a packet)
ACN Audio Communication Network
ACS Access Control Services
ASCII American Standard for Character Information Interchange
AT Attendance Registration
AVS Allegiant Video Switcher
CC Camera Control
CCU Central Control Unit. This can be either a single-CCU system or a

Multi-CCU system.
CR list Comment Request list. An extra type of request to speak list to offer

delegates the possibility to request for a comment on the current
speaker. On the units and on the Control PC a comment is indicated
as ‘Response’

CS list Comment Speakers list. An extra type of speakers list in which
delegates can be placed to make a comment on the current speaker.

DB Delegate Database
DCC Direct Camera Control
DCN Digital Congress Network
DCN NG Digital Congress Network Next Generation
DDI Dual Delegate Interface
FIFO First In First Out
IC Intercom
IN Simultaneous Interpretation
IP Internet Protocol
DCN-CCU Product number of the CCU. Which can be one of the following:

• DCN-CCU2
• DCN-CCUB2

LCD Liquid Crystal Display
LD Text/Status Display
LED Light Emitting Diode
LSB Least Significant Byte
MCCU Multi CCU system. A DCN NG system consisting of multiple slave

CCU’s and one master CCU
MD Message Distribution
Message-data Data transmitted along with a specific message-type. The data is

needed to fulfill the purpose of the message.
Message-type Specifies the purpose of the message (e.g. remote function call, etc.)
MM Microphone Management

DCN Next Generation Open Interface Release 4.1 en | 11

Bosch Security Systems | 2013 March

MSB Most Significant Byte
MTB Multi Trunc Board
MV Multi Voting
NAK Negative acknowledge (of a packet)
Names file Permanent store for delegate data that are related, identifiable within

DCN NG
NBK list Notebook list (list of chairmen and special assigned delegates)
NG Next Generation
NPPV Ne Prennent pas Poart an Vote, delegate is present and does not

want to take part with the current voting round.
OMF File An executable file in a special format that can be programmed or

downloaded into the Read Only Memory on the CCU
PC Personal Computer
PCB Printed Circuit Board
Present Key The leftmost softkey of the delegate or chairman unit (softkey 1) with

5 softkeys present, in case the settings and activation for attendance
registration request for that functionality

PV Parliamentary Voting
Remote Controller Device (e.g. PC) connected to the CCU that remotely controls one or

more of the applications present in the CCU.
RFS Remote Function Services
RTS list Request To Speak list
SC System Configuration
SCCU Single-CCU system.
SI System Installation
SI System Installation
SI System Installation
SM Synoptic Microphone Control
SPK list Speakers list
ST Startup DCN Next Generation
STP Shielded Twisted Pair
TCB Trunc Communication Board
TCP Transmission Control Protocol
UnitId Unit identification, also called unit-number. A unique identification of

a unit within the CCU system.
UnitId Unit identification, also called unit-number. A unique identification of

a unit within the DCNNG system.
UTP Unshielded Twisted Pair
VD Video Display
VT Voting application

 Definition RS-232 signals
CD Carrier Detect
Rx Received Data
Tx Transmitted Data
DTR Data Terminal Ready
GND signal Ground
DSR Data Set Ready
RTS Request To Send
CTS Clear To Send
RI Ring Indicator

 Definition ASCII characters used
CR Carriage Return ASCII character (value 0x0D)
ESC Escape ASCII character (value 0x1B)
‘$’ Dollar sign (value 0x24)
‘?’ Question mark (value 0x3F)
‘#’ Number symbol (value 0x23)
‘@’ At character (value 0x40)

DCN Next Generation Open Interface Release 4.1 en | 12

Bosch Security Systems | 2013 March

1.4 References

[USERDOC_CC] User Manual Camera Control Application LBB 4188
[USERDOC_IC] User Manual Intercom Application LBB 4173
[USERDOC_IN] User Manual Simultaneous Interpretation Application LBB 4172
[USERDOC_LD] User Manual Text/Status Display LBB 4183
[USERDOC_MD] User Manual Message Distribution Application LBB 4182

DCN Next Generation Open Interface Release 4.1 en | 13

Bosch Security Systems | 2013 March

2. GENERAL DESCRIPTION

2.1 System setup

To interface with applications present in the CCU, we will use the Ethernet port present on the
CCU.

The device (PC, embedded controller, etc.) connected to the Ethernet port is the second
controlling system to the CCU1. This device is called remote controller in the remaining part of
the document.

The PC on the top-right in Figure 1 is the DCN NG control PC. A control PC can be connected
via Ethernet. The remote controller on the right controls an application remotely using the
Ethernet port of the CCU. This remote controller can be, for instance, a mimic panel, a
computer that controls and presents voting results, etc.

Third parties can build their own remote controller software to serve several SW-applications.
Each SW-application on the remote controller can control the corresponding application on the
CCU using the remote interface protocol.

2.1.1 Use of TCP/IP port
The communication between the CCU and the remote controller is message based (remote
functions and update notification). The messages are transported as binary streams of bytes.

The remote control interface must be configured according to the specifications in Appendix
A.

2.1.2 Requirements
As mentioned above the remote controller can be connected to the TCP/IP port of the CCU.
For the remote controller the following hardware requirements are needed for the systems:

1 We assume that the DCN NG Control PC connected to an Ethernet port is the primary controller for the CCU.
The remote controller is then the secondary controller. Only one remote controller is needed to control remotely.
Both controllers may be present and operate concurrent, controlling different parts of the CCU.

TCP/IP
CCU

DCN NG
network

DCN NG Control PC

Remote
Controller

ACN TCP/IP

Ethernet
Switch

 TCP/IP

Figure 1 Hardware configurations remote controls

DCN Next Generation Open Interface Release 4.1 en | 14

Bosch Security Systems | 2013 March

⇒ Single/Multi CCU system (DCN-CCU):
This type of CCU has 1 TCP/IP port. An UTP or STP cable is used to connect the
master CCU-CCU to the remote controller.
The TCP/IP port number used for the communications is described in Appendix A.1.

2.1.3 Hardware connection

2.1.3.1 CCU
The hardware connection between the CCU and remote controller is made by using an UTP
or STP cable. The maximum cable length between the CCU and the remote controller may be
approximately 100 meter. When longer distances are needed we advise the use of a repeater
which ensures the transmission between two systems.

2.2 Message format
The communication used between the remote controller and the CCU is based on messages.
This chapter describes the format of the message and the different message types used to
transport data between the remote controller and the CCU.

2.2.1 Conventions
In the sections and chapters below several structures are defined. To prevent problems these
structures are defined using standard data types, which have defined sizes and usage. The
following data types will be used:

BOOLEAN : a 1 byte unsigned value with the range 0...1 (FALSE and TRUE).
CHAR : a 1 byte type representing ASCII characters. Strings are represented as an

array of CHAR and are terminated with a zero (‘\0’) character.
BYTE : a 1 byte unsigned value with the range 0...255.
SBYTE : a 1 byte signed value with the range -128...127.
WORD : a 2 byte unsigned value with the range 0...65535.
SWORD : a 2 byte signed value with the range -32768...32767.
DWORD : a 4 byte unsigned value with the range 0...(232-1).
SDWORD : a 4 bytes signed value with the range -(231)...(231-1).

Note that all number representation in the data are presented in little-endian2 format.

2.2.2 DCN-NG message layout

2.2.2.1 Format of type MDSC_REMOTEPROCEDURE_REQ
Remote functions are messages, which are always transmitted to the CCU. The message
type must be equal to the value ‘MDSC_REMOTEPROCEDURE_REQ’.

The “message data” transmitted for a remote function follows the following format:

typedef struct

{

 WORD wFnId; // function identifier

 REQSTRUC tStructure; // function parameters if any!

} RSMT_REMOTEPROCEDURE_REQ;

where:

wFnId The function identifier.

tStructure A structure containing the parameters needed to process the

2 Little endian is a storage mechanism where the least significant byte is stored on the lowest address, followed
by the more significant bytes. E.g. a WORD is represented in memory as two consecutive bytes where the LSB
is stored on the lowest address and the MSB on the next address.

DCN Next Generation Open Interface Release 4.1 en | 15

Bosch Security Systems | 2013 March

function defined by the function identifier (if any).

The ‘wFnId’ and the ‘tStructure’ are tightly coupled. Therefore the parameter structure is not
defined strictly with the basic types, but a special type is used to identify that the structure
depends on the function identifier.

The actual structure definition to be sent along with the remote function is not described in this
document. The structures are presented along with the definition of the remote function in the
interface documents for the application.

After the remote function request is sent to the CCU, the CCU will always send back a
response upon the reception of a remote function (see §2.2.2.2). The remote controller should
wait for the response to be sure that the function ended successfully before sending another
remote function to the CCU.

Note that the CCU does not generate this kind of messages.

2.2.2.2 Format of type MDSC_REMOTEPROCEDURE_RSP
Upon a receipt of a remote function the CCU shall process the requested function and create
a response as result of that function. The message type will be equal to the value
‘MDSC_REMOTEPROCEDURE_RSP’.

The message data received for the response of a remote function follows the following format:

typedef struct

{

 WORD wFnId; // function identifier

 WORD wError; // return error-code from the function

 RSPSTRUC tStructure; // response information if any!

} RSMT_REMOTEPROCEDURE_RSP;

where:

wFnId The function identifier. The same value as passed with the
remote function request.

wError The return error-code of the function called. Note that if this
value is non-zero, the content of the ‘tStructure’ parameter is
not valid3.

tStructure A structure containing the response information after the
processing of the remote function (if any).

The ‘wFnId’ and the ‘tStructure’ are tightly coupled. Therefore the response information
structure is not defined strictly with the basic types, but a special type is used to identify that
the structure depends on the function identifier.

The actual structure definition to be received after handling a remote function request is not
described in this document. The structures are presented along with the definition of the
remote function in the interface documents for the application.

2.2.2.3 Format of type MDSC_NOTIFY
Upon a status change the CCU reports this change by sending an update notification to the
remote controller. It is up to the remote controller to use the information received from the
CCU. The CCU sends the information to the remote controller and does not expect any reply
from the remote controller on these notifications.

The update notifications are always coming from the CCU and are only sent to the remote
controller if he has registered for an application4. The message type will be equal to the value
‘MDSC_NOTIFY’.

3 Upon error the ‘wError’ field is filled with an error code (see Appendix C), which references the source of the
error. Depending on the location of the error the ‘tStructure’ data may not be present. Therefore do not use the
‘tStructure’ data when ‘wError’ is not equal to zero.
When the error code has not been described, the error must be reported.

DCN Next Generation Open Interface Release 4.1 en | 16

Bosch Security Systems | 2013 March

The message data received along the update notification follows the following format:

typedef struct

{

 WORD wFnId; // notification identifier

 NTFSTRUC tStructure; // update information if any!

} RSMT_NOTIFY;

where:

wFnId The notification identifier.

tStructure A structure containing the update information.

The ‘wFnId’ and the ‘tStructure’ are tightly coupled. Therefore the parameter structure is not
defined strictly with the basic types, but a special type is used to identify that the structure
depends on the notification identifier.

The actual structure definition to be sent along with the update notification is not described in
this document. The structures are presented along with the definition of the update notification
in the interface documents for the application.

2.2.3 Ethernet message layout
Each message must have this layout:

MessageType Length Data

Defined in (c-style) structure format:

struct {

 DWORD dwMessageType; // Message Type

 DWORD dwLength; // Message Length

 BYTE byData[]; // Message Data (Length – 8 bytes)

};

Where:

dwMessageType The “message-type”, which describes the content of the actual
data passed.

dwLength The total length of the message in number of bytes, including
the sizes of the message-type and length. The length must
match the actual transmitted size of bytes.
Since the MessageType and the Length are always present, the
minimum size of the message is 8 bytes. The maximum size of
a message is 8000 bytes.

byData Data here is the data described in paragraph 2.2.3.1, 2.2.3.2
and 2.2.3.3.

4 Registration for an application is done by calling a ‘start application’ remote function call. This function call
enables the transmission of update notification for that application. The update can be stopped again by calling
the ‘stop application’ remote function call.

DCN Next Generation Open Interface Release 4.1 en | 17

Bosch Security Systems | 2013 March

2.2.3.1 Format of type MESSAGETYPE_OIP_KeepAlive
Purpose:

The heartbeat message is a special message, which can be sent to the DCN NG System
at any time. In normal circumstances the heartbeat message is transmitted every 5
seconds (when nothing else to transmit). The message is used to notify the DCN NG
System that your system is still alive. The DCN NG System also sends heartbeat
messages to indicate that the DCN NG System is still operational. You must check if two
successive messages are received within 15 seconds.

Note that the heartbeat message is similar to the notification messages.

Parameter structure:
struct {

 DWORD dwMessageType;

 DWORD dwLength;

 DWORD dwReserved1;

 DWORD dwReserved2;

} OIP_KeepAlive;

Where:

dwMessageType The message type indicator for the heartbeat message.
Constant value MESSAGETYPE_OIP_KeepAlive (See
Appendix A).

dwLength The total length of the Heartbeat message (16 bytes for this
message).

dwReserved1 Session sequence number. Currently the reserved1 is not used
and should be set to the value zero (0).

dwReserved2 Message sequence number. Currently the reserved2 is not
used and should be set to the value zero (0).

2.2.3.2 Format of type MESSAGETYPE_OIP_ResponseProtocolError
Purpose:

Any message sent towards the DCN NG System is checked against its boundaries
(message size, string size, validity of the message-type, not logged in …). In case a
mismatch is detected regarding the size, a universal error response message is returned.
Response message as described in section 2.2.3.3 cannot be used, because the received
message is not decoded nor processed.

Parameter structure:
struct {

 DWORD dwMessageType;

 DWORD dwLength;

 DWORD dwReserved1;

 DWORD dwReserved2;

 DWORD dwErrorCode;

 DWORD dwErrorPosition;

} OIP_ResponseProtocolError;

Where:

dwMessageType The message type indicator for the message. Constant value
MESSAGETYPE_OIP_ResponseProtocolError (See
Appendix B).

dwLength The total length of the Heartbeat message (24 bytes for this
message).

dwReserved1 Session sequence number. Currently the reserved1 is not used
and should be set to the value zero (0).

dwReserved2 Message sequence number. Currently the reserved2 is not
used and should be set to the value zero (0).

dwErrorCode The error code of the received message. For the possible error

DCN Next Generation Open Interface Release 4.1 en | 18

Bosch Security Systems | 2013 March

codes see Appendix C.
dwErrorPosition The byte offset in the message stream, where the fault is

detected.
Related messages:

Any message received by the DCN NG System and is not conform the message guideline as
described in 2.2.3.

2.2.3.3 Format of type MESSAGETYPE_OIP_Dcn
Command messages can be sent to control the DCN NG System. Commands always result in
a response from the DCN NG System. The expected response is referenced with each
command or the generic response MESSAGETYPE_OIP_ResponseProtocolError is
returned in case the message is corrupted. Each command message starts with a fixed
number of fields, which are presented below in structure format.

NOTE:
In the time between the transmission of the command message and the reception of the
response message, the DCN NG System can receive notification messages.

struct {

 BYTE byDcnMsgType;

 WORD wFnId;

 BYTE byMessageTypeHeader; /* Fixed value 0x43 */

} OIP_DCN_MSGTYPE

struct {

 OIP_DCN_MSGTYPE tMessageType;

 DWORD dwLength;

 DWORD dwReserved1;

 DWORD dwReserved2;

 BYTE byData[];

} OIP_Dcn;

Where:

byMessageTypeHeader Message type byte with a fixed value of 0x43.
wFnId The function identifier.

Note that the data in this message also starts with a function
identifier (see the description of the data in paragraph 2.2.2.1,
2.2.2.2, 2.2.2.3), this function identifier and the function
identifier in the data should be identical.

byDcnMsgType Is equal to the byType value described in 2.2.2. Currently the
following types are defined for communication with the CCU:

• MDSM_REMOTEPROCEDURE_REQ
• MDSM_REMOTEPROCEDURE_RSP
• MDSM_NOTIFY

dwLength The total length of the command structure.
dwReserved1 Session sequence number. Currently the reserved1 is not

used and should be set to the value zero (0)
dwReserved2 Message sequence number. Currently the reserved2 is not

used and should be set to the value zero (0).
byData Data corresponding to the description of the message-type.

The data here is the data described in paragraph 2.2.2.1,
2.2.2.2, 2.2.2.3 and starts with a function identifier.

DCN Next Generation Open Interface Release 4.1 en | 19

Bosch Security Systems | 2013 March

2.3 Protocol description

2.3.1 Ethernet Protocol Description

2.3.1.1 Open interface protocol

2.3.1.1.1 Set-up a connection
After DCN NG has been started, the CCU listens to port 9451. The set-up of the TCP/IP
connection must originate from your system using the IP address of the CCU and port 9451.
The connection between the DCN NG System and your System is based on a stream
connection. This implies that messages may be transferred using multiple packets.

2.3.1.1.2 Heartbeat
After the connection between your system and DCN NG has been established, the CCU of
DCN NG starts the heartbeat checks of your system. The CCU checks if a message is
received within 15 seconds after the last message. When the time between two messages is
more than 15 seconds, the CCU considers the connection to be broken and closes the
TCP/IP connection to your system.

It is advised to also run heartbeat checks of DCN NG on your system. To signal that the
connection is still present, you must transmit a "MESSAGETYPE_OIP_KeepAlive" message
(refer to section 2.2.3.1) to the CCU every 5 seconds when no other messages are ready for
transmission.

2.3.1.1.3 Timing values
This section presents the different value and time-limits needed for handling the protocol.

Description Value
Transmit timeout for transmission heartbeat message 5 seconds
Check timeout to verify whether a message is received (reset after each
message reception)

15 seconds

Maximum command response time 10 seconds
Minimum message size (message-type + length) 8 bytes
Maximum message size 8000 bytes

2.3.2 Remote function execution
Beside the protocol used for transmitting the data between the remote controller and the CCU,
the CCU executes the remote function requests. In this section the execution of the remote
functions is explained to give an overview about the generation of updates during the
execution.

The remote controller can sent a remote function request to the CCU. After the transmission
the remote controller must wait for the response coming from the CCU.

During the execution of that remote
function in the CCU, the internal
state of e.g. microphones changes.
This results in the generation of
update notifications, which are
transmitted to the remote controller
immediately. After the completion of
the remote function execution the
response of that function is sent
back to the remote controller. This
flow of messages to and from the
CCU is shown in Figure 2 (two
notification messages between the
request and the response).

Remote Controller

CCU

Response Notify Notify
Request

time

Figure 2 Message flow during a Remote function

DCN Next Generation Open Interface Release 4.1 en | 20

Bosch Security Systems | 2013 March

The typical time between the request made and the response received is less than 0,5
seconds.

In the sequence described there is only one remote function request in execution on the CCU.
The remote controller waits for the completion of that remote function. The remote controller
can expect the following ending states of the remote request:

• The actual response of the remote function. The remote function is ended and there were
no transmission errors.

• The NAK packet. This implies that the CCU had a checksum error found after the
reception of the remote function request. The remote controller should respond on this
NAK message by sending again the same request.

• A time-out of the request pending. This means that the CCU does not respond any more.

The remote controller must wait upon the completion of his remote function request. But in
rare circumstance it is possible that there are two remote function requests pending. In that
case the CCU handles both remote function requests after each other (order is maintained).

2.3.3 Control flow with multiple remote controller’s
In a DCN NG-system as shown in Figure 1 (CCU with both a remote controller and the DCN
NG Control PC connected), there are up to three locations where events can be generated.
The locations are:

• The actual units. E.g. microphone keys, soft-keys (voting).

• The DCN NG Control PC connected using Ethernet. This DCN NG Control PC uses
Remote Function calls to trigger functionality.

• The remote controller connected using Ethernet. This Remote Controller also uses
Remote Function calls to trigger functionality.

To get a fully operational system both the DCN NG Control PC and the remote controller must
register themselves to the CCU, so they will receive update messages from the CCU.

Events coming from a unit are processed. During the processing, notifications are generated
and sent to all registered controllers. In the system mentioned above, both the DCN NG
Control PC and the Remote Controller will receive the same update notifications if they are
registered to the same application.

Remote functions coming from either the DCN NG Control PC or the Remote Controller
initiate a function in the CCU. During the function processing, notifications are generated and
sent to both the DCN NG Control PC and the Remote Controller. In this way both remote
controllers get the update information about the actions performed on request of the DCN NG
Control PC or the Remote Controller. (see also Figure 2).
Note that all remote functions are stored in a FIFO queue before execution. This means that
when both controllers call a remote function, both remote functions will be executed one after
another (the time difference depends which function will be executed first).

2.4 Remote Functions

2.4.1 Remote function handling
On the CCU all incoming remote functions are handled by the Remote Function Services
(RFS). During start-up of the system applications register their remote controllable functions at
the Remote Function Services.

When a remote function request is received by the CCU, that request is passed to the RFS
sublink. If the function is available, the data structure will be prepared for the response data.
During this process general failures may occur. The RFS sublink handles these failures by
returning an empty response (only containing the function identifier and the error-code, no
extra data). The error-code informs the remote controller which general failure has occurred.

DCN Next Generation Open Interface Release 4.1 en | 21

Bosch Security Systems | 2013 March

Possible error codes are:
RFSE_BADFUNCTIONID The remote function is not available
RFSE_ALLOCFAILED Response space allocation failure
RFSE_NOACCESSPERMISSION The remote function is not authorized
These error-codes are described in Appendix C.

2.4.2 Simultaneous operation from Control PC and Remote Controller
In some cases it is possible to have the same application running on the DCN Next
Generation Control PC and (simultaneously) having that application running on a remote
controller. Some applications can only be active on one place at a time. In the table below all
possible combinations are depicted. All legal combinations are marked +. All illegal
combinations are marked -. If an illegal combination is created, the proper working of DCN is
not guaranteed anymore.

Remote Interface apps DCN-SW DCN-SWSMV

SI - -

DB - -

SC + +

MM + +

CC - +

IN Control - +

IN Monitoring + +

VT - -

LD - -

MD + +

AT - +

IC Control - -

IC Monitoring + +

DCN Next Generation Open Interface Release 4.1 en | 22

Bosch Security Systems | 2013 March

3. SYSTEM CONFIGURATION AND SYSTEM INSTALLTION

3.1 Introduction
The System Configuration and System Installation Remote Interface is part of the DCN NG
software which allows another controlling entity, not being the DCN NG Control PC, to use the
System Configuration and System Installation.

3.1.1 Remote functions
System Configuration (SC) is the application that monitors the hardware configuration of the
congress system and the link between hardware items and user information. Typical SC
issues are, e.g. checking the communication status, determining the system mode and
replacing units.

System Installation (SI) is the application that allows for assigning seat numbers to units to
create a one to one link between a unique user chosen identifier and a congress unit in the
conference hall.

Maintaining the system configuration or performing a system installation with a remote
interface is done by means of calling a defined set of Remote Functions and acting upon a
defined set of Update Notifications. The general concept of remote functions and update
notifications is described in chapter 2. This chapter also defines the protocol and hardware
conditions concerning the remote interface. This document gives the set of remote functions
and the set of update notifications concerning SC and SI. The relation between remote
function and update notifications is given in the description of each separate remote function.

The system configuration and system installation process however, are also influenced by the
actions of the users performed upon the actual units. Actions such as pressing the
microphone button or disconnecting a unit from the system also results in update notifications
being sent to the remote controller. The relation between unit/user events and update
notifications can be found in the user event matrices in sections 3.4.1.2 en 3.6.1.1.

3.1.1.1 Remote function item explanation
Each description consists of the following items:

• Purpose
A global description of the purpose of the function.

• Availability
CCU System modes in which the function is available. See section 3.1.2.

• Parameter structure for the function
The input parameters needed to fulfill the function. When the function requires no
parameters, no structure is described here.

• Response structure from the function
The output information returned by the function called. This information is only valid when
the ‘wError’ field of the received response information equals SC_E_NOERROR,
SI_E_NOERROR or DB_E_NOERROR.

• Error codes returned
The error values returned in the ‘wError’ field of the response information. All different error
codes are described in Appendix C Error Codes.

• Update notifications
The update notifications, which are generated during the execution of the remote function.
When there are no notifications generated, then this part will be omitted.

Related functions
The related function in conjunction with the function described. It refers to other remote
functions and to related update notifications.

DCN Next Generation Open Interface Release 4.1 en | 23

Bosch Security Systems | 2013 March

3.1.2 System Modes
To understand the SC and SI functions, one should have some knowledge on the behavior of
the CCU depending on the various so-called system modes. This section gives a brief,
although complete, description of these modes.

The CCU system as a whole is always running in one of the system modes. Each application
on the CCU has its own behavior in each system mode. The purpose of the system mode is to
have a clear division of functions and an easy way of separating them. It should be impossible
for instance to start the installation mode while the CCU is still booting, i.e. the CCU is in the
Init-mode.

The following system modes are used:

Init One time mode after start-up of the CCU. The CCU can
start with default data (defined as ‘cold start’), or with data
the last time used (so called ‘warm start’).

Config In this system mode the DCN NG configuration can be
changed, for instance installing units, assigning seat
numbers, assigning audio channels etc.

Congress This is the 'normal' system mode. In this mode most
applications will do their work, for instance starting a voting
round, turning on a microphone, interpreting etc.

Maintenance In this system mode the DCN NG system can be
maintained, for instance factory testing.

Download In this system mode new CCU software can be
downloaded.

Down One time system mode just before shutdown of the CCU.

Figure 3 below gives an overview of possible system mode changes.

Per function is specificated what system modes are supported.

3.2 System Configuration (SC) Functions

3.3 Introduction
The system configuration functions described in this section are needed to query the set-up of
the DCN NG-system from the CCU. The system configuration functions allow the remote
controller to monitor any changes in the DCN NG system configuration. This chapter defines
the set of remote functions for system configuration.

 Init

Download Maintenance

Congress

Down

Config

Figure 3: CCU System modes

DCN Next Generation Open Interface Release 4.1 en | 24

Bosch Security Systems | 2013 March

3.3.1 SC_C_CHECK_LINK
Purpose
Function, which does no execution on the CCU. This function is to check the communication
link between the CCU and the remote controller. When executed, the function returns
immediately. Therefore quickly returning SC_E_NOERROR to the remote controller when
there is a connection.

Availability
This function is available in CCU system mode's init, maintenance, config and congress.

Parameter structure for the function
The function has no additional parameters.

Response structure from the function
The function has no response parameters.

Error codes
SC_E_NOERROR

3.3.2 SC_C_START_APP
Purpose
Indicates the CCU that the remote controller wants update notifications from the SC
application inside the CCU. After receiving this function the CCU increments the update ‘use’
count. As long as the update use count is greater than zero, the CCU will send update
notifications to the remote controller.

The returned update use count can be used to detect if the remote controller is connected too
often.

When you omit the execution of this remote function, you can still execute remote functions,
but no update messages will be sent to the remote controller.

Availability
This function is available in CCU system modes config and congress.

Parameter structure for the function
The function has no additional parameters.

Response structure from the function
The function returns the following structure:

WORD wNrOfInstances

where:

wNrOfInstances The value of the update use count for the SC application at the
end of the function handling. It contains the number of times a
remote PC has been connected over the same communication
medium. E.g. the first time the function SC_C_START_APP is
called, it contains the value 1.

Error codes returned
SC_E_NOERROR

Related functions
SC_C_STOP_APP

3.3.3 SC_C_STOP_APP
Purpose
Indicates the CCU that the remote controller no longer requires updates from the SC
application inside the CCU. After receiving this function the CCU decrements the update ‘use’
count. As long as the update use count is greater than zero, the CCU remains sending the
update notifications to the remote controller.

DCN Next Generation Open Interface Release 4.1 en | 25

Bosch Security Systems | 2013 March

Note that: Upon communication loss this function will be activated, if
SC_C_START_APP was activated. The activation of this function is repeated
till the update use count becomes zero.

Availability
This function is available in CCU system modes config and congress.

Parameter structure for the function
The function has no additional parameters.

Response structure from the function
The function has the same response structure as the remote function SC_C_START_APP
(section 3.3.2).

Error codes returned
SC_E_NOERROR

Related functions
SC_C_START_APP

3.3.4 SC_C_GET_CCU_VERSIONINFO
Purpose
This function is used to query the CCU version information. Usually this will be the first
function called after start-up of the remote controller to check the correct version of the CCU
software.

Availability
This function is available in all CCU system modes.

Parameter structure for the function
The function has no additional parameters.

Response structure from the function
The function returns the following structure:

typedef struct

{

 WORD tOperatingMode;

 CHAR szSwVersion [SC_C_MAX_VERSION_LENGTH];

 BYTE byMajorVersionOfDownloadedSw;

 BYTE byMinorVersionOfDownloadedSw;

 BYTE byMajorVersionOfResidentSw;

 BYTE byMinorVersionOfResidentSw;

 BYTE bySystemMode;

 BYTE byReservedForSwInfo [SC_C_MAX_SOFTWARE_INFO];

 WORD tCCUType;

 BYTE byTCBVersion;

 BYTE byReservedForHwInfo [SC_C_MAX_HARDWARE_INFO];

 CHAR szSWRelNum[VERSION_C_LENGTH];

} SC_T_CCU_VERSION_INFO;

where:

tOperatingMode The current operating mode of the CCU. It gives information
about the environment the CCU is functioning. The value is an
‘OR’ mask of the following settings:

• SC_C_STANDALONE
• SC_C_EXTENDED
• SC_C_SINGLETRUNC
• SC_C_MULTITRUNC
• SC_C_MASTER
• SC_C_SLAVE

szSwVersion The current operating mode of the CCU in readable text. The

DCN Next Generation Open Interface Release 4.1 en | 26

Bosch Security Systems | 2013 March

string is zero (‘\0’) terminated. If e.g. it is a Single CCU running
extended software, this string would read:
“EXTENDED SingleTrunc Version”.

byMajorVersionOfDownloadedSw, byMinorVersionOfDownloadedSw
 The major and minor version numbers of the downloaded

software (OMF-file). If no downloaded software is present, then
both will be zero.
If e.g. the downloaded software is DCN NG 4.0,
byMajorVersionOfDownloadedSw will be ‘4’ and
byMinorVersionOfDownloadedSw will be ‘0’

byMajorVersionOfResidentSw, byMinorVersionOfResidentSw
 The major and minor version numbers of the resident software

(Boot-software).
If e.g. the resident software is of version 1.0,
byMajorVersionOfResidentSw will be ‘1’ and
byMinorVersionOfResidentSw will be ‘0’.

bySystemMode The Current System Mode of the CCU. Value according to
following type:

• DCNC_SM_DOWN
• DCNC_SM_INIT
• DCNC_SM_CONFIG
• DCNC_SM_CONGRESS
• DCNC_SM_MAINTENANCE
• DCNC_SM_DOWNLOAD

byReservedForSwInfo Reserved space for extra software information.

tCCUType Type of CCU connected to. Value according to following type:
• SC_C_DCN_CCU2
• SC_C_DCN_CCUB2

byTCBVersion Hardware version of the CCU.

byReservedForHwInfo Reserved space for extra hardware information.

szSWRelNum Software version number as ASCII string. The string is zero
(‘\0’) terminated. This is the string representation of
byMajorVersionOfDownloadedSw plus
byMinorVersionOfDownloadedSw, e.g. if the version of the
downloaded software is 4.0, this string will read “4.0”

Error codes returned
SC_E_NOERROR

3.3.5 SC_C_GET_CCU_CONFIG <deprecated>
Purpose
Retrieve information about all units connected to the congress network. This function returns
for each unit connected its unit-number and type.

Availability
This function is available in CCU system mode congress.
Do not use this function because this function becomes deprecated in next major release.

Parameter structure for the function

The parameter structure is the same as SC_C_GET_CCU_CONFIG_PROPERTY.

Response structure from the function
The function returns the following structure:

DCN Next Generation Open Interface Release 4.1 en | 27

Bosch Security Systems | 2013 March

typedef struct

{

 WORD wNumberOfSlaveCCUs;

 WORD wNumberOfUnitsConnected;

 WORD wNumberOfUnits;

 SC_T_UNIT_DATA tUnitData [SC_C_CLUSTER_MAX];

} SC_T_CCU_CONFIGURATION;

where the SC_T_UNIT_DATA is defined as:

typedef struct

{

 WORD wUnitId;

 BYTE byUnitType;

} SC_T_UNIT_DATA;

The respons structure is almost the same as SC_C_GET_CCU_CONFIG_PROPERTY with
the exception of the SC_T_UNIT_DATA structure which does not contain the wUnitProperties
which is available in SC_T_UNIT_DATA_PROPERTY.

For explanation of the parameters see SC_C_GET_CCU_CONFIG_PROPERTY.

Error codes returned
SC_E_NOERROR

3.3.6 SC_C_GET_CCU_CONFIG_PROPERTY
Purpose
Retrieve information about all units connected to the congress network. This function returns
for each unit connected its unit-number, type and capabilities of the unit.

Availability
This function is available in CCU system mode congress.

Parameter structure for the function
The function requires the following structure as parameter:

WORD wClusterIndex;

where:

wClusterIndex Determines which cluster is to be returned as response. Zero
(0) to retrieve the first cluster of SC_C_CLUSTER_MAX units.
One (1) for the second cluster of SC_C_CLUSTER_MAX units,
etc.
When the cluster is not completely filled, then that cluster is the
last cluster available.
All cluster indexes greater than this one will have an empty
tUnitData array. However, the other three elements of the
response structure will still contain correct data.

Response structure from the function
The function returns the following structure:

typedef struct

{

 WORD wNumberOfSlaveCCUs;

 WORD wNumberOfUnitsConnected;

 WORD wNumberOfUnits;

 SC_T_UNIT_DATA_PROPERTY tUnitData [SC_C_CLUSTER_MAX];

} SC_T_CCU_CONFIGURATION;

where the SC_T_UNIT_DATA_PROPERTY is defined as:

DCN Next Generation Open Interface Release 4.1 en | 28

Bosch Security Systems | 2013 March

typedef struct

{

 WORD wUnitId;

 BYTE byUnitType;

 WORD wUnitProperties

} SC_T_UNIT_DATA_PROPERTY;

where:

wNumberOfSlaveCCUs
 The number of Slave-CCU’s connected within a Multi-CCU

system, which ranges from 0 to 16. In case of a Single-CCU
system this number will be zero.

wNumberOfUnitsConnected
 The actual number of units present in the system, even if the

total number is larger than the maximum size of the ‘tUnitData’
array. wNumberOfUnitsConnected ranges from 0 to
DBSC_MAX_ACT_UNIT.
When there are more units than the size of the ‘tUnitData’
structure, the structure is completely filled and the unit data for
the other units must be queried by using another clusterindex.
This number will be the same for all clusters requested.

wNumberOfUnits The number of units present in the tUnitData array. Only this
amount of array elements is transmitted. This number will be
limited to the upper bound of the tUnitData array-size.

tUnitData [] Array holding the unit-information of each unit. Each array
element is defined as a SC_T_UNIT_DATA structure. The
elements of this structure are described below.

wUnitId The unit identifier of a unit. Also called unit-number.

byUnitType The type of the unit, which is on of the following:
• DCNC_UNIT_VOTING
• DCNC_UNIT_INTEGRUS4
• DCNC_UNIT_INTEGRUS8
• DCNC_UNIT_INTEGRUS16
• DCNC_UNIT_INTEGRUS32
• DCNC_UNIT_DATA_COMM
• DCNC_UNIT_NG_INTERPRETER
• DCNC_UNIT_CCU_CONTROL
• DCNC_UNIT_DATA_COMM_RS232
• DCNC_UNIT_2000_DELEGATE
• DCNC_UNIT_2000_CHAIRMAN

• DCNC_UNIT_AUDIO_IO
• DCNC_UNIT_AUDIO_IO_DIGITAL
• DCNC_UNIT_COBRANET
• DCNC_UNIT_DISC_DELEGATE
• DCNC_UNIT_DISC_DELEGATE_DUAL
• DCNC_UNIT_DISC_CHAIRMAN
• DCNC_UNIT_DUAL_MIC
• DCNC_UNIT_FLUSH_CHR_NODISPLAY
• DCNC_UNIT_FLUSH_DEL_NODISPLAY
• DCNC_UNIT_ENTRANCE
• DCNC_UNIT_EXIT
• DCNC_UNIT_AMBIENT_MIC

Note that future unit extensions of the DCN NG system
can lead to new unit-type, not presented in this list.

DCN Next Generation Open Interface Release 4.1 en | 29

Bosch Security Systems | 2013 March

.

wUnitProperties Holds the properties of a unit. This can be a
combination of the following.
DCNC_HAS_MIC
DCNC_HAS_AUX
DCNC_HAS_KEYS
DCNC_HAS_CARD
DCNC_HAS_DISPLAY
DCNC_HAS_GRAPHICAL_DISPLAY
DCNC_HAS_INTERCOM
DCNC_HAS_EXTERNAL
DCNC_HAS_BOOTH_DESK
DCNC_HAS_HELP
DCNC_HAS_SPEAKSLOWLY
DCNC_HAS_BATTERY
DCNC_HAS_QUALITY_LEVEL
DCNC_HAS_DATACHANNEL_SUPPORT
DCNC_HAS_MOST_INTERFACE
DCNC_HAS_NEED_FOR_CARD_SETTINGS

Error codes returned
SC_E_NOERROR

3.3.7 SC_C_REQ_SERIAL_NR
Purpose
Request the serial numbers of the specified units of the system. The master controller will
return the serial numbers with the SC_C_SERIAL_NR notification.

Availability
This function is available in system mode: MAINTENANCE, CONFIG and CONGRESS.

Parameter structure for the function
The function requires the following structure as parameter:

typedef struct

{

 WORD wNrOfUnits;

 UNITID tUnitId[DBSC_MAX_ACT_UNIT];

} SC_T_UNIT_LIST;

where:

wNrOfUnits The number of unit list entries actual present in the tUnitId
array. Only this amount of array elements is transmitted. This
value never exceeds the constant DBSC_MAX_ACT_UNIT.

tUnitId [] Array holding the list of unit ids.

UnitId 0x0000 will return the serial number of the master
controller.

Response structure from the function
The function has no response parameters.

Error codes returned
SC_E_NOERROR
SC_E_WRONG_PARAMETER

Update notifications
SC_C_ SERIAL_NR

3.3.8 SC_C_GET_SLAVE_NODES
Purpose
Retrieve the slave nodes of a unit with the specified serial number. The serial number can only
be from the current master controller (CCU) or any slave CCU or WAP. The current master
controller returns a list of all serial numbers of all the directly attached units.

DCN Next Generation Open Interface Release 4.1 en | 30

Bosch Security Systems | 2013 March

Availability
This function is available in system mode: MAINTENANCE, CONFIG and CONGRESS.

Parameter structure for the function
DWORD dwSerialNr;

where:

dwSerialNr The serial number of a unit of CCU type.
Response structure from the function
The function returns the following structure:

typedef struct

{

 WORD wNrOfSerialNrs;

 DWORD dwSerialNr[DBSC_MAX_ACT_UNIT];

} SC_T_SERIAL_NR_LIST;

where:

wNrOfSerialNrs The number of slave nodes present in the dwSerialNr array. Only
this amount of array elements is transmitted. This number will be
limited to the upper bound of the dwSerialNr array-size.

dwSerialNr [] Array holding the serial number of each slave node.

Error codes returned
SC_E_NOERROR
SC_E_WRONG_PARAMETER
SC_E_UNIT_NOT_FOUND
Related functions
SC_C_REQ_SERIAL_NR

3.3.9 SC_C_GET_ UNIT_IDS
Purpose
Retrieve the unit identification(s) of the unit with the specified serial number. A unit can have
one or more unit identifications.

Availability
This function is available in system mode: MAINTENANCE, CONFIG and CONGRESS.

Parameter structure for the function
DWORD dwSerialNr;

where:

dwSerialNr The serial number of a unit
Response structure from the function

typedef struct

{

 WORD wNrOfUnits;

 UNITID tUnitId[DBSC_MAX_ACT_UNIT];

} SC_T_UNIT_LIST;

where:

wNrOfUnits The number of unit list entries actual present in the tUnitId
array. Only this amount of array elements is transmitted. This
value never exceeds the constant DBSC_MAX_ACT_UNIT.

tUnitId [] Array holding the list of unit ids.

Error codes returned
SC_E_NOERROR
SC_E_WRONG_PARAMETER
SC_E_UNIT_NOT_FOUND

DCN Next Generation Open Interface Release 4.1 en | 31

Bosch Security Systems | 2013 March

Related functions
SC_C_REQ_SERIAL_NR

3.3.10 SC_C _BATTERY_STATUS_REQ
Purpose
This function will request the battery status of all units in the parameter list. After executing
this function a notification will be send for each known unit.

Availability
This function is available in system mode: MAINTENANCE, CONFIG and CONGRESS.

Parameter structure for the function
The function requires the following structure as parameter:

typedef struct

{

 WORD wNrOfUnits;

 UNITID tUnitList[DBSC_MAX_UNIT];

} SC_T_UNIT_LIST;

where:

wNrOfUnits The number of unit list entries actual present in the tUnitList
array. Only this amount of array elements is transmitted. This
value never exceeds the constant DBSC_MAX_UNIT.

tUnitList[] Array holding the list of unit ids.

Response structure from the function
The function has no response parameters.

Error codes returned
SC_E_NOERROR
SC_E_UNIT_NOT_CONNECTED
SC_E_UNIT_NOT_FOUND

Update notifications
SC_C_BATTERY_STATUS

3.3.11 SC_C_BATTERY_INFO_REQ
Purpose
This function will request the battery information of all units in the parameter list. After
executing this function two notifications will be send for each known unit.

Availability
This function is available in system mode: MAINTENANCE, CONFIG and CONGRESS.

Parameter structure for the function
The function requires the following structure as parameter:

typedef struct

{

 WORD wNrOfUnits;

 UNITID tUnitList[DBSC_MAX_UNIT];

} SC_T_UNIT_LIST;

where:

wNrOfUnits The number of unit list entries actual present in the tUnitList
array. Only this amount of array elements is transmitted. This
value never exceeds the constant DBSC_MAX_UNIT.

tUnitList[] Array holding the list of unit ids.

DCN Next Generation Open Interface Release 4.1 en | 32

Bosch Security Systems | 2013 March

Response structure from the function
The function has no response parameters.

Error codes returned
SC_E_NOERROR
SC_E_UNIT_NOT_CONNECTED
SC_E_UNIT_NOT_FOUND

Update notifications
SC_C_BATTERY_SERIAL
SC_C_BATTERY_ COND

3.3.12 SC_C_SIGNAL_STATUS_REQ
Purpose
This function will request the signal status of all units in the parameter list. After executing this
function a notification will be send for each known unit.

Availability
This function is available in system mode: MAINTENANCE, CONFIG and CONGRESS.

Parameter structure for the function
The function requires the following structure as parameter:

typedef struct

{

 WORD wNrOfUnits;

 UNITID tUnitList[DBSC_MAX_UNIT];

} SC_T_UNIT_LIST;

where:

wNrOfUnits The number of unit list entries actual present in the tUnitList
array. Only this amount of array elements is transmitted. This
value never exceeds the constant DBSC_MAX_UNIT.

tUnitList[] Array holding the list of unit ids.

Response structure from the function
The function has no response parameters.

Error codes returned
SC_E_NOERROR
SC_E_UNIT_NOT_CONNECTED
SC_E_UNIT_NOT_FOUND

Update notifications
SC_C_SIGNAL_STATUS

3.3.13 SC_C_SIGNAL_QUALITY_REQ
Purpose
This function will request the signal quality of the system.

Availability
This function is available in system mode: MAINTENANCE, CONFIG and CONGRESS.

Parameter structure for the function
The function has no additional parameters.

Response structure from the function
The function has no response parameters.

Error codes returned
SC_E_NOERROR

Update notifications
SC_C_ SIGNAL_QUALITY

DCN Next Generation Open Interface Release 4.1 en | 33

Bosch Security Systems | 2013 March

3.3.14 SC_C_UNIT_SIGNAL_QUALITY_REQ
Purpose
This function will request the signal quality of all units in the parameter list. After executing this
function a notification will be send for each known unit.

Availability
This function is available in system mode: MAINTENANCE, CONFIG and CONGRESS.

Parameter structure for the function
The function requires the following structure as parameter:

typedef struct

{

 WORD wNrOfUnits;

 UNITID tUnitList[DBSC_MAX_UNIT];

} SC_T_UNIT_LIST;

where:

wNrOfUnits The number of unit list entries actual present in the tUnitList
array. Only this amount of array elements is transmitted. This
value never exceeds the constant DBSC_MAX_UNIT.

tUnitList[] Array holding the list of unit ids.

Response structure from the function
The function has no response parameters.

Error codes returned
SC_E_NOERROR

Update notifications
SC_C_UNIT_SIGNAL_QUALITY

3.3.15 SC_C_LOW_BATTERY_REQ
Purpose
This function will request the global low battery status of the system.

Availability
This function is available in system mode: MAINTENANCE, CONFIG and CONGRESS.

Parameter structure for the function
The function has no additional parameters.

Response structure from the function
The function has no response parameters.

Error codes returned
SC_E_NOERROR

Update notifications
SC_C_ LOW_BATTERY

3.3.16 SC_C_GET_ENCRYPTION_ENABLED
Purpose
Retrieve the current encryption enabled status.

Availability
This function is available in system mode: MAINTENANCE, CONFIG and CONGRESS.

Parameter structure for the function
The function has no additional parameters.

Response structure from the function
The function returns the following structure:

DCN Next Generation Open Interface Release 4.1 en | 34

Bosch Security Systems | 2013 March

BOOLEAN bEnabled;

Error codes returned
SC_E_NOERROR

3.3.17 SC_C_SET_ENCRYPTION_ENABLED
Purpose
Set the current encryption enabled status.

Availability
This function is available in system mode: MAINTENANCE, CONFIG and CONGRESS.

Parameter structure for the function
The function requires the following structure as parameter:

BOOLEAN bEnabled;

Response structure from the function
The function has no response parameters.

Error codes returned
SC_E_NOERROR
SC_E_INVALID_CHANNEL
SE_E_FAILED

Update notifications
SC_C_ ENCRYPTION_ENABLED

3.4 System Configuration (SC) notifications

3.4.1 Introduction
This chapter defines the set of update notifications concerning SC send by the CCU.

3.4.1.1 Update Notification item explanation
Each description consists of the following items:

• Purpose
A global description of the purpose of the notification.

• Notify structure with this update
The information passed with the update notification.

3.4.1.2 Unit/user event relations
In the previous chapter a description is given of each remote function with a summary of
update notifications being the result of executing that function. However, update notifications
are also the results of user actions done on the actual units or CCU’s. This section gives
unit/user event matrices for the SC application in which the possible user events are linked
with the corresponding update notification(s) depending on the system set-up. For some
events also the required remote functions to continue SC monitoring and maintaining are
given.

The update notifications themselves are described in the remaining sections of this chapter.
The recommended functions from the SI group are described in chapter 3.4.8.

UNIT-EVENT MATRIX

Single-CCU System (Remote Controller connected as specified in chapter 2

Event Update Notification Continue with remote function

Switch On CCU SC_C_CCU_REBOOT SC_C_START_APP

Recommended before continuing:
SC_C_GET_CCU_VERSIONINFO

DCN Next Generation Open Interface Release 4.1 en | 35

Bosch Security Systems | 2013 March

Event Update Notification Continue with remote function

SC_C_GET_CCU_CONFIG
SI_C_START_INSTALL and run
installation as described in example-1
in Appendix D

Connect a unit SC_C_CONNECT_UNIT Recommended before continuing:
SI_C_START_INSTALL and run
installation as described in example-2
in Appendix D

Disconnect a unit SC_C_DISCONNECT_UNIT

Multi-CCU System (Remote Controller connected to the Master as specified in chapter 2

Event Update Notification Continue with remote function

Switch On a Slave CCU,

while Master CCU is still

off

<None>

Switch On Master CCU SC_C_CCU_REBOOT SC_C_START_APP

Recommended before continuing:
SC_C_GET_CCU_VERSIONINFO
SC_C_GET_CCU_CONFIG
SI_C_START_INSTALL and run
installation as described in example-1
in Appendix D

Switch On a Slave CCU SC_C_CONNECT_SLAVE_CCU

and a few seconds later for every

unit connected to that Slave CCU

separately

SC_C_CONNECT_UNIT

Recommended before continuing on the
unit connect updates:
SI_C_START_INSTALL and run
installation as described in example-2
in Appendix D

Switch Off a Slave CCU SC_C_DISCONNECT_SLAVE_CCU

Connect a Unit SC_C_CONNECT_UNIT Recommended before continuing:
SI_C_START_INSTALL and run
installation as described in example-2
in Appendix D

Disconnect a Unit SC_C_DISCONNECT_UNIT

Single-Multi System, i.e. a Multi CCU system but one or more of the Slave CCU’s configured
to run in Single Mode

Event Update Notification Continue with remote function

Remote Controller connected to CCU-A, a CCU configured to run in Single CCU mode

Switch On CCU-A SC_C_CCU_REBOOT SC_C_START_APP

Recommended before continuing:
SC_C_GET_CCU_VERSIONINFO
SC_C_GET_CCU_CONFIG
SI_C_START_INSTALL and run
installation as described in example-1
in Appendix D

Switch On the Master CCU <None>

Switch On another CCU <None>

DCN Next Generation Open Interface Release 4.1 en | 36

Bosch Security Systems | 2013 March

Event Update Notification Continue with remote function

(Slave or Single-Mode)

Disconnect another CCU

(Slave or Single-Mode)

<None>

Connect a unit to CCU-A. SC_C_CONNECT_UNIT Recommended before continuing:
SI_C_START_INSTALL and run
installation as described in example-2
in Appendix D

Disconnect a unit from

CCU-A.

SC_C_DISCONNECT_UNIT

Connect a unit to another

CCU (Slave or Single-

Mode).

<None>

Disconnect a unit from

another CCU (Slave or

Single-Mode).

<None>

Remote Controller connected to the Master CCU

Switch On CCU-A <None>

Switch On the Master CCU. SC_C_CCU_REBOOT SC_C_START_APP

Recommended before continuing:
SC_C_GET_CCU_VERSIONINFO
SC_C_GET_CCU_CONFIG
SI_C_START_INSTALL and run
installation as described in example-1
in Appendix D

Switch On a Slave CCU SC_C_CONNECT_SLAVE_CCU

and a few seconds later for every

unit connected to that Slave CCU

separately

SC_C_CONNECT_UNIT

Recommended before continuing on the
unit connect updates:
SI_C_START_INSTALL and run
installation as described in example-2
in Appendix D

Switch On another Single-

Mode CCU

<None>

Switch Off a Slave CCU SC_C_DISCONNECT_SLAVE_CCU

Switch Off another

Single-Mode CCU

<None>

Connect a unit to CCU-A. <None>

Disconnect a unit from

CCU-A.

<None>

Connect a unit to a Slave

CCU.

SC_C_CONNECT_UNIT Recommended before continuing:
SI_C_START_INSTALL and run
installation as described in example-2
in Appendix D

Disconnect a unit from a

Slave CCU.

SC_C_DISCONNECT_UNIT

Connect a unit to another

Single-Mode CCU.

<None>

Disconnect a unit from

another Single-Mode CCU.

<None>

DCN Next Generation Open Interface Release 4.1 en | 37

Bosch Security Systems | 2013 March

3.4.2 SC_C_CCU_REBOOT
Purpose
Notifies the remote controller that the CCU has restarted. This notification is always send at
start-up of the CCU and is the only notification message send by the CCU till the update
request function SC_C_START_APP is executed.

This notification should be monitored to detect a restart of the CCU. The remote controller
should take appropriate actions to restore the settings.

Notify structure with this update
The update comes with the same structure as used for the response of the remote function
SC_C_GET_CCU_VERSIONINFO (section 3.3.4).

3.4.3 SC_C_CONNECT_UNIT
Purpose
Notifies the remote controller that a new unit has connected to the CCU. The remote controller
can use this notification to add this unit to its functionality.

Notify structure with this update
The update uses the following structure:

SC_T_UNIT_DATA tUnitData;

where:

tUnitData Information about the unit that is connected. The elements
present in the structure are defined in section 3.3.5.

3.4.4 SC_C_DISCONNECT_UNIT
Purpose
Notifies the remote controller that a unit has lost his connection with the CCU (i.e. the unit is
disconnected from the ACN-trunk or MOST-trunk). This notification informs the remote
controller that the unit is no longer available.

Notify structure with this update
The update comes along with the same structure as defined in section 3.4.3.

3.4.5 SC_C_CONNECT_SLAVE_CCU
Purpose
Notifies the remote controller that a slave-CCU has connected to the master-CCU.

Notify structure with this update
The update comes with the following structure:

typedef struct

{

 BYTE bySlaveId;

 WORD wFillLevel;

 SC_T_UNIT_DATA tConnectedUnits[SC_C_CLUSTER_MAX];

} SC_T_CCU_CONNECT;

where:

bySlaveId The identification number of the slave-CCU involved.

wFillLevel The number of units present in the tConnectedUnits array. Only
this amount of array elements is transmitted.

tConnectedUnits A list of units that are connected to the slave in question. This
means that all units reported in the list are also connected. Each
list element is defined as a SC_T_UNIT_DATA structure which
is defined in section 3.3.5.

Note: Although the list is defined with SC_C_CLUSTER_MAX
elements, only the maximum number of units possible for

DCN Next Generation Open Interface Release 4.1 en | 38

Bosch Security Systems | 2013 March

one slave will be transmitted.

Currently the wFillLevel parameter will always be zero. Due to the nature of the units and the
control flow used with the CCU (slave and master), each unit will connect itself using the
notification SC_C_CONNECT_UNIT. Therefore no units are reported in this list. Future
extension in the software could build a list of units connected to a slave. That list should then
be reported in the tConnectedUnits list.

3.4.6 SC_C_DISCONNECT_SLAVE_CCU
Purpose
Notifies the remote controller that the master-CCU has lost connection to one of his slave-
CCU’s. Along with this notification a list of all units connected to that slave is send. This
notification tells the remote controller that the listed units are no longer available.

Notify structure with this update
The update comes with the following structure:

typedef struct

{

 BYTE bySlaveId;

 WORD wFillLevel;

 SC_T_UNIT_DATA tDisconnectedUnits[SC_C_CLUSTER_MAX];

} SC_T_CCU_DISCONNECT;

where:

bySlaveId The identification number of the slave-CCU involved.

wFillLevel The number of units present in the tDisconnectedUnits array.
Only this amount of array elements is transmitted.

tDisconnectedUnits A list of units that are connected to the slave in question at the
moment of disconnecting the slave. This means that all units
reported in the list are also disconnected. Each list element is
defined as a SC_T_UNIT_DATA structure which is defined in
section 3.3.5.

Note: Although the list is defined with SC_C_CLUSTER_MAX
elements, only the maximum number of units possible for
one slave will be transmitted.

This notification differs from SC_C_CONNECT_SLAVE_CCU such that wFillLevel and the
tDisconnectedUnits array do inform the remote controller about units being disconnected
together with this Slave-CCU. This implies that the units listed in the ‘tDisconnectedUnits’ do
not notify themselves as disconnected with SC_C_DISCONNECT_UNIT.

3.4.7 SC_C_CCU_MODE_CHANGE
Purpose
Notifies the remote controller that the CCU changed its operation mode. For more information
about the different modes see 3.3.4.

Notify structure with this update
typedef struct

{

 WORD wCurrentMode;

 WORD wNewMode;

} SC_T_CCU_MODE_CHANGE;

where:

wCurrentMode The current CCU system mode, so before the mode
change. Possible system mode values are defined in the
bySystemMode field of the structure used within the

DCN Next Generation Open Interface Release 4.1 en | 39

Bosch Security Systems | 2013 March

function SC_C_GET_CCU_VERSIONINFO (see section
3.3.4).

wNewMode The new CCU system mode, so after the mode change.

3.4.8 SC_C _SERIAL_NR
Purpose
Notifies the remote controller about the serial number of the unit. This notification is send in
response to SC_C_REQ_SERIAL_NR.

Notify structure with this update
The update comes with the following structure:

struct

{

 UNITID tUnitId;

 DWORD dwSerialNr;

}

where:

tUnitId The unit identifier of a unit.

dwSerialNr Serial number of the unit

Some units do not have actual serial numbers. In that case
the numbers are generated according to the current situation.
If this changes (i.e. a different addressing order after a de-init)
then the serial number will change. As long as the addressing
stays the same the serial numbers are supposed to remain
the same between single and multi systems.

3.4.9 SC_C_BATTERY_STATUS
Purpose
Notifies the remote controller the battery status of a unit. This notification is send after the
battery status of a unit has been changed or after SC_C_BATTERY_STATUS_REQ is
executed.

Notify structure with this update
The update uses the following structure:

typedef struct

{

 UNITID tUnitId;

 BYTE byBatteryLevel;

 WORD wRemainingTime;

} SC_T_BATTERY_STATUS;

where:

tUnitId The unit identifier of a unit.

byBatteryLevel Level of the battery [%] from 0 to 100 %

When the unit has no battery the level will be 100

wRemainingTime Remaining time of the battery in minutes

When the unit has no battery the remaining time will be
0xFFFF

3.4.10 SC_C_BATTERY_INFO_SERIAL
Purpose
Notifies the remote controller the serial number of the battery located in the unit. This
notification is send after SC_C_BATTERY_INFO_REQ is executed.

DCN Next Generation Open Interface Release 4.1 en | 40

Bosch Security Systems | 2013 March

Notify structure with this update
The update comes with the following structure:

typedef struct

{

 UNITID tUnitId;

 DWORD dwSerialNr;

} SC_T_BATTERY_INFO_SERIAL;

where:

tUnitId The unit identifier of a unit.

dwSerialNr Serial number of the battery located in the unit

When the unit has no battery the serial number will be
0xFFFFFFFF

3.4.11 SC_C_BATTERY_INFO_COND
Purpose
Notifies the remote controller the condition of the battery located in the unit. This notification is
send after SC_C_BATTERY_INFO_REQ is executed.

Notify structure with this update
The update comes with the following structure:

typedef struct

{

 UNITID tUnitId;

 WORD wChargeCount;

} SC_T_BATTERY_INFO_COND;

where:

tUnitId The unit identifier of a unit.

wChargeCount Number of charges / discharges for the battery, which has been
passed, located in the unit

When the unit has no battery the number of charges /
discharges will be 0

3.4.12 SC_C_SIGNAL_STATUS
Purpose
Notifies the remote controller the signal status of a unit. This notification is send after the
signal status of a unit has been changed or after SC_C_SIGNAL_STATUS_REQ is executed.

Notify structure with this update
The update uses the following structure:

typedef struct

{

 UNITID tUnitId;

 SC_T_SIGNAL_LEVEL tSignalLevel;

} SC_T_SIGNAL_STATUS;

where:

tUnitId The unit identifier of a unit.

tSignalLevel The signal level of the unit which is one of the following:
• SC_C_SIGNAL_EXCELLENT
• SC_C_SIGNAL_GOOD
• SC_C_SIGNAL_POOR

DCN Next Generation Open Interface Release 4.1 en | 41

Bosch Security Systems | 2013 March

3.4.13 SC_C_SIGNAL_QUALITY
Purpose
Notifies the remote controller the quality of the signal within the system. This notification is
send after the signal quality has been changed or after SC_C_SIGNAL_QUALITY_REQ is
executed.

Notify structure with this update
The update comes with the following structure:

BOOLEAN bBadSignal;

where:

bBadSignal TRUE: Signal quality of the system is bad.
FALSE: Signal quality of the system is ok.

3.4.14 SC_C_UNIT_SIGNAL_QUALITY
Purpose
Notifies the remote controller of the quality of the signal of a unit. This notification is send after
the signal quality has been changed or after SC_C_UNIT_SIGNAL_QUALITY_REQ is
executed.

Notify structure with this update
The update comes with the following structure:

typedef struct

{

 UNITID tUnitId;

BOOLEAN bBadSignal;

} SC_T_UNIT_SIGNAL_QUALITY;

where:

tUnitId The unit identifier of a unit.
bBadSignal TRUE: Signal quality of the unit is bad.

FALSE: Signal quality of the unit is ok.

3.4.15 SC_C_LOW_BATTERY
Purpose
Notifies the remote controller the overall battery status within the system. This notification is
send after the low battery has been changed or after SC_C_LOW_BATTERY_REQ is
executed.

Notify structure with this update
The update comes with the following structure:

BOOLEAN bLowBattery;

where:

bLowBattery TRUE: At least one unit has a low battery status.
FALSE: No units with a low battery status within the system.

3.4.16 SC_C_ENCRYPTION_ENABLED
Purpose
Notifies the remote controller of the current encryption enabled status of the wireless network.
This notification is send after the wireless encryption enabled status has been changed or
after SC_C_SET_ENCRYPTION_ENABLED is executed.

Notify structure with this update
The update comes with the following structure:

DCN Next Generation Open Interface Release 4.1 en | 42

Bosch Security Systems | 2013 March

BOOLEAN bEnabled;

where:

bEnabled TRUE: Wireless network is encrypted
FALSE: Wireless network is not encrypted.

3.5 System Installation (SI) functions

3.5.1 Introduction
The system installation functions provide functionality to connect unit identification with the
seat numbers used within the congress-hall. This process is also called seat-assignment. This
chapter defines the set of remote functions needed for system installation. Each description is
according to the definition given in section 3.1.1.1.

3.5.2 SI_C_START_INSTALL
Purpose
Start the installation mode. The remote controller can choose between 2 modes of installation,
which are:

Mode Description
SI_C_GLOBAL_INSTALL_MODE
 Global installation mode. When activating this mode, the CCU stops all

applications running and only runs the installation application. When the
function is successfully executed, the CCU has changed the system mode
from congress to config.
Entering the system mode config enables the update notification
SI_C_REGISTER_UNIT, which informs the remote controller about
someone pressing a soft-key on a unit. The remote controller must use this
notification message to link the unit with a seat.
By pressing a soft-key on all units in order of the seat-numbers the remote
controller can build a list of units with the seat-numbers as index. An
example using this mode is presented in Appendix D.

SI_C_OPERATIONAL_INSTALL_MODE
 Operational installation mode. During this mode all applications keep on

running. The CCU remains in the congress mode.
No special update notification for registration will be enabled. The remote
controller must select a proposed unit and the seat-number must be
searched to link them together.

To finish the installation, the remote controller must execute the function
SI_C_STOP_INSTALL.

Availability
This function is available in CCU system mode congress.

Parameter structure for the function
The function requires the following information as parameter:

WORD wInstallMode;

where:

wInstallMode The installation mode to be used. This parameter can have one
of the following values:

• SI_C_GLOBAL_INSTALL_MODE
• SI_C_OPERATIONAL_INSTALL_MODE

Response structure from the function
The function has no response parameters.

DCN Next Generation Open Interface Release 4.1 en | 43

Bosch Security Systems | 2013 March

Error codes returned
SI_E_NOERROR
SI_E_ALREADY_STARTED
SI_E_MODE_CHANGE_FAILED

Update Notifications
SC_C_CCU_MODE_CHANGE (if the remote controller is registered to receive SC update
notifications, i.e. it has called SC_C_START_APP)

Related functions
SI_C_STOP_INSTALL
SI_C_SELECT_UNIT

3.5.3 SI_C_STOP_INSTALL
Purpose
This function stops the installation started with the function SI_C_START_INSTALL. The CCU
will return to congress mode if that is not the current system mode. The selected units will be
deselected.

Note that: Upon communication loss this function will be activated, if
SI_C_START_INSTALL was activated.

Availability
This function is available in CCU system mode config.

Parameter structure for the function
The function has no additional parameters.

Response structure from the function
The function has no response parameters.

Error codes returned
SI_E_NOERROR
SI_E_NOT_IN_CONTROL

Update Notifications
SC_C_CCU_MODE_CHANGE (if the remote controller is registered to receive SC update
notifications, i.e. it has called SC_C_START_APP)

Related functions
SI_C_START_INSTALL
SI_C_SELECT_UNIT

3.5.4 SI_C_SELECT_UNIT
Purpose
Select a unit for linking to a seat by means of flashing all LED’s on the unit. Only one unit can
be selected at the same time. When the second unit is selected, the first unit is deselected
automatically before the selection of the second.

This function will only select a unit if the unit selected represents an installable unit. An
installable unit is a unit, which can be assigned with a seat number.

Installable unit types are
DCNC_UNIT_VOTING
DCNC_UNIT_2000_DELEGATE
DCNC_UNIT_2000_CHAIRMAN

DCNC_UNIT_DISC_DELEGATE
DCNC_UNIT_DISC_DELEGATE_DUAL
DCNC_UNIT_DISC_CHAIRMAN
DCNC_UNIT_DUAL_MIC

DCNC_UNIT_FLUSH_CHR_NODISPLAY

DCN Next Generation Open Interface Release 4.1 en | 44

Bosch Security Systems | 2013 March

DCNC_UNIT_FLUSH_DEL_NODISPLAY

DCNC_UNIT_NG_INTERPRETER

When called during the installation mode SI_C_GLOBAL_INSTALL_MODE, the microphone
of the unit will be turned on as long as the unit is selected.

Availability
This function is available in CCU system modes config and congress.

Parameter structure for the function
The function requires the following structure as parameter:

typedef struct

{

 WORD wUnitId;

 BOOLEAN bSelectOn;

} SI_T_SELECT_UNIT;

where:

wUnitId The unit identifier of the unit selected.

bSelectOn TRUE: All LED’s of the unit will be flashing.
FALSE: All LED’s of the unit will be off

Response structure from the function
The function has no response parameters.

Error codes returned
SI_E_NOERROR
SI_E_INVALID_UNITTYPE
SI_E_WRONG_PARAMETER
SI_E_NO_UNIT_SELECTED

Related functions
SI_C_START_INSTALL
SI_C_STOP_INSTALL

3.5.5 SI_C_SET_MASTER_VOL
Purpose
Sets the master audio volume. The audio volume of the delegate loudspeakers, lineout and
rec-out can be changed.

Availability
This function is available in CCU system modes config and congress.

Parameter structure for the function
WORD wMasterVolume;

where:

wMasterVolume The new overall volume setting for the system. A number in
the range 0..25 (default DCNC_DEFAULT_MASTERVOLUME). In this
range, a zero value means mute all delegate loudspeakers.
The values 1 up until 25 correspond with an audio
amplification of -12dB up until 12dB in steps of 1 dB.

Response structure from the function
The function has no response parameters.

Error codes returned
SI_E_NOERROR
SI_E_WRONG_PARAMETER

DCN Next Generation Open Interface Release 4.1 en | 45

Bosch Security Systems | 2013 March

3.5.6 SI_C_SET_EXT_CONTACT
Purpose
Sets the usage of the external present contact. The external present contact can be used to
register present or used as a fraud contact.

Availability
This function is available in CCU system mode config.

Parameter structure for the function
SI_T_EXT_CONTACT byExtContact;

where:
byExtContact The usage of the external present contact which can be

SI_C_NO_FUNCTION, SI_C_PRESENT or
SI_C_FRAUD.

SI_T_EXT_CONTACT typedef BYTE SI_T_EXT_CONTACT;

Response structure from the function
The function has no response parameters.

Error codes returned
SI_E_NOERROR

Related functions
SI_C_GET_EXT_CONTACT

3.5.7 SI_C_GET_EXT_CONTACT
Purpose
Gets the usage of the external present contact.

Availability
This function is available in CCU system mode config and congress.

Parameter structure for the function
The function has no additional parameters.

Response structure from the function
SI_T_EXT_CONTACT byExtContact;

where:

byExtContact The usage of the external present contact which can be
SI_C_NO_FUNCTION, SI_C_PRESENT or SI_C_FRAUD.

Default behavior is SI_C_NO_FUNCTION

SI_T_EXT_CONTACT typedef BYTE SI_T_EXT_CONTACT;

Error codes returned
SI_E_NOERROR

Related functions
SI_C_SET_EXT_CONTACT

3.5.8 SI_C_SET_MICROPHONE_GAIN
Purpose
Adapts the microphone sensitivity of a unit.

Availability
This function is available in CCU system modes config, congress and maintenance.

DCN Next Generation Open Interface Release 4.1 en | 46

Bosch Security Systems | 2013 March

Parameter structure for the function
WORD wUnitId;

WORD wGain;

where:

wUnitId The unit identifier of a unit. Also called unit-number.

wGain The microphone sensitivity/gain setting for the unit in the
range 0..15. The values 0 up until 15 correspond with a
microphone sensitivity setting change of -6dB up until 9dB in
steps of 1 dB.
The default value of the microphone sensitivity is
DCNC_MICROPHONE_GAIN_DEFAULT.

Response structure from the function
The function has no response parameters.

Error codes returned
SI_E_NOERROR
SI_E_WRONG_PARAMETER
SI_E_UNIT_NOT_FOUND
SI_E_INVALID_UNITTYPE

Related functions
SI_C_GET_MICROPHONE_GAIN

Update notifications
SI_C_MICROPHONE_GAIN

3.5.9 SI_C_GET_MICROPHONE_GAIN
Purpose
Gets the microphone sensitivity of a unit.

Availability
This function is available in CCU system modes config, congress and maintenance.

Parameter structure for the function
WORD wUnitId;

where:

wUnitId The unit identifier of a unit. Also called unit-number.

Response structure from the function
WORD wGain;

where:

wGain The current microphone sensitivity/gain setting for the unit in
the range 0..15.

Error codes returned
SI_E_NOERROR
SI_E_UNIT_NOT_FOUND
SI_E_INVALID_UNITTYPE

Related functions
SI_C_SET_MICROPHONE_GAIN

DCN Next Generation Open Interface Release 4.1 en | 47

Bosch Security Systems | 2013 March

3.5.10 SI_C_RESET_MICROPHONE_GAIN
Purpose
Resets the microphone sensitivity of all units to the default gain setting.

Availability
This function is available in CCU system modes config, congress and maintenance.

Parameter structure for the function
The function has no input parameters.

Response structure from the function
The function has no response parameters.

Error codes returned
SI_E_NOERROR
SI_E_NO_UNITS_FOUND

Update notifications
SI_C_MICROPHONE_GAIN_RESET

3.5.11 SI_C_DEINITIALIZE_ALL
Purpose
Deinitializes a CCU and all the attached units.

Availability
This function is available in CCU system modes CONFIG.

Parameter structure for the function
The function has no input parameters.

Response structure from the function
The function has no response parameters.

Error codes returned
SI_E_NOERROR
SI_E_SYSTEM_NOT_READY

3.5.12 SI_C_GET_OPERATION_MODE
Purpose
Get the operation mode of the CCU.

Availability
This function is available in all system modes.

Parameter structure for the function
The function has no input parameters.

Response structure from the function
The function has the following response parameters.

BYTE byStartupMode;

BYTE bySlaveId;

where:

byStartupMode The startup mode of the CCU (0 = single mode, 1 = multi
mode, 2 = standalone mode).

bySlaveId The slave id of the CCU (between 0 and 31).

Error codes returned
SI_E_NOERROR
SI_E_WRONG_PARAMETER

Related functions
SI_C_SET_OPERATION_MODE

DCN Next Generation Open Interface Release 4.1 en | 48

Bosch Security Systems | 2013 March

3.5.13 SI_C_SET_OPERATION_MODE
Purpose
Set the operation mode of the CCU.

Availability
This function is available in all system modes.

Parameter structure for the function
The function requires the following input parameters:

BYTE byStartupMode;

BYTE bySlaveId;

where:

byStartupMode The startup mode of the CCU (0 = single mode, 1 = multi
mode, 2 = standalone mode).

bySlaveId The slave id of the CCU (between 0 and 31). When setting
the startup mode to multi, the slave id cannot be 0.

Change the slave id from 0 to another value and visa versa
will trigger a soft reset.

byStartupMode = 0
bySlaveId = 1 -31

The DCN-CCU operates in single mode and is not master of
the optical network.
Interpretation channels from the DCN-CCU are not
sent/received to/from optical devices.
In this case another master needs to be present in the optical
network. When a master is not present or cannot be found
the DCN-CCU will show the “NO MASTER” error.

byStartupMode = 1
bySlaveId = 1

The DCN-CCU operates in multi master mode and is master
of the optical network.
Interpretation channels from the DCN-CCU are sent/received
to/from optical devices.

byStartupMode = 1
bySlaveId = 2 -31

The DCN-CCU operates in slave mode and is fully controlled
by the DCN-CCU Master. The DCN-CCU is not master of the
optical network.
Interpretation channels from the DCN-CCU are
send/received to/from optical devices.
In this case a DCN-CCU Master needs to be present in the
optical network. When a DCN-CCU Master is not present or
cannot be found the DCN-CCU will show the “NO
NETWORK” error.

The unitId of units connected to this DCN-CCU is defined as:
<bySlaveId * 0x200h> + <unitId in single mode>

byStartupMode = 2
bySlaveId = 1 - 31

The DCN-CCU operates in standalone mode and is master
of the optical network.
Interpretation channels from the DCN-CCU are sent/received
to/from optical devices.

Response structure from the function
The function has no response parameters.

Error codes returned
SI_E_NOERROR
SI_E_WRONG_PARAMETER

Related functions
SI_C_GET_OPERATION_MODE

DCN Next Generation Open Interface Release 4.1 en | 49

Bosch Security Systems | 2013 March

3.5.14 SI_C_UNSUBSCRIBE_REQ
Purpose
Unsubscribe one of more units.

Availability
This function is available in all system modes.

Parameter structure for the function
The function requires the following input parameters:

WORD wNrOfUnits;

UNITID tUnitList[DBSC_MAX_UNIT];

where:

wNrOfUnits Number of units to unsubscribe.

tUnitList List of unit-id’s to unsubscribe

Response structure from the function
The function has no response parameters.

Error codes returned
SI_E_NOERROR
SI_E_SYSTEM_NOT_READY

Related functions
SI_C_DEINITIALIZE_ALL

3.5.15 SI_C_GET_WAP_SETTINGS
Purpose
Retrieve all settings of the WAP.

Availability
This function is available in system mode: MAINTENANCE, CONFIG and CONGRESS.

Parameter structure for the function
The function has one parameter:

UNITID tUnitId;

where:

tUnitId Reserved. (The unit identifier of a WAP.) Must be
DCNC_UNASSIGNED_UNIT.

Response structure from the function
The function returns the following structure:

typedef struct

{

 UNITID tUnitId;

 SI_T_CARRIER byCarrier;

 SI_T_WIRELESS_POWERLEVEL byPowerLevel;

 BYTE byOptions;

} SI_T_WAP_SETTINGS;

where:

tUniId The unit identifier of a WAP. This will be
DCNC_UNASSIGNED_UNIT if there is no WAP connected to
the CCU.

byCarrier The carrier of the WAP which is one of the following:
• SI_C_CARRIER_BAND_1
• SI_C_CARRIER_BAND_2

DCN Next Generation Open Interface Release 4.1 en | 50

Bosch Security Systems | 2013 March

• SI_C_CARRIER_BAND_3

byPowerLevel The coverage of the WAP which is one of the following:
• SI_C_POWERLEVEL_OFF
• SI_C_POWERLEVEL_LOW
• SI_C_POWERLEVEL_MEDIUM
• SI_C_POWERLEVEL_HIGH

byOptions The options field is, at least, equal to:
• WAP_ENABLE_LANGUAGE_DISTRUBUTION

Additionally the following value can be set when Wireless
encryption is enabled:

• WAP_ENABLE_ENCRYPTION
Error codes returned
SI_E_NOERROR

Related functions
SI_C_SET_WAP_SETTINGS
SI_E_WRONG_PARAMETER

3.5.16 SI_C_SET_WAP_SETTINGS
Purpose
Set all settings of the WAP.

Availability
This function is available in system mode: MAINTENANCE, CONFIG and CONGRESS.

Parameter structure for the function
The function requires the following input parameters:

typedef struct

{

 UNITID tUnitId;

 SI_T_CARRIER byCarrier;

 SI_T_WIRELESS_POWERLEVEL byPowerLevel;

 BYTE byOptions;

} SI_T_WAP_SETTINGS;

where:

tUniId Reserved. (The unit identifier of a WAP.). Will be
DCNC_UNASSIGNED_UNIT.

byCarrier The carrier of the WAP which is one of the following:
• SI_C_CARRIER_BAND_1
• SI_C_CARRIER_BAND_2
• SI_C_CARRIER_BAND_3

byPowerLevel The coverage of the WAP which is one of the following:
• SI_C_POWERLEVEL_OFF
• SI_C_POWERLEVEL_LOW
• SI_C_POWERLEVEL_MEDIUM
• SI_C_POWERLEVEL_HIGH

byOptions The options field must, at least, be equal to:
• WAP_ENABLE_LANGUAGE_DISTRUBUTION

Additionally the following value can be added to the options field
to enable Wireless encryption:

• WAP_ENABLE_ENCRYPTION
Response structure from the function
The function has no response parameters.

DCN Next Generation Open Interface Release 4.1 en | 51

Bosch Security Systems | 2013 March

Error codes returned
SI_E_NOERROR
SI_E_WRONG_PARAMETER

Related functions
SI_C_GET_WAP_SETTINGS

Update notifications
SI_C_WAP_SETTINGS

3.5.17 SI_C_GET_WIRELESS_SETTINGS
Purpose
Retrieve all wireless system settings of the system.

Availability
This function is available in system mode: MAINTENANCE, CONFIG and CONGRESS.

Parameter structure for the function
The function has no additional parameters.

Response structure from the function
The function returns the following structure:

typedef struct

{

 BYTE bySystemId;

 BYTE byRepetitions;

} SI_T_WIRELESS_SETTINGS;

where:

bySystemId The system identifier. Range 0…15

NOTE: The system identifier is not only the wireless system
identifier, but the system identifier used throughout the entire
system.

byRepetitions The number of repetitions within the wireless communication
path. Range 0…2

Error codes returned
SI_E_NOERROR

Related functions
SI_C_SET_WIRELESS_SETTINGS

3.5.18 SI_C_SET_WIRELESS_SETTINGS
Purpose
Set all wireless system settings of the system.

Availability
This function is available in system mode: MAINTENANCE, CONFIG and CONGRESS.

Parameter structure for the function
The function requires the following input parameters:

typedef struct

{

 BYTE bySystemId;

 BYTE byRepetitions;

} SI_T_WIRELESS_SETTINGS;

where:

bySystemId The system identifier. Range 0…15

NOTE: Changing the system identifier will change not only the

DCN Next Generation Open Interface Release 4.1 en | 52

Bosch Security Systems | 2013 March

wireless system identifier, but will change the system identifier
throughout the entire system.

byRepetitions The number of repetitions within the wireless communication
path. Range 0…2

Response structure from the function
The function has no response parameters.

Error codes returned
SI_E_NOERROR
SI_E_WRONG_PARAMETER

Related functions
SI_C_GET_WIRELESS_SETTINGS

Update notifications
SI_C_WIRELESS_SETTINGS

3.5.19 SI_C_GET_NETWORK_MODE
Purpose
Retrieve the network mode of the system.

Availability
This function is available in system mode: CONGRESS.

Parameter structure for the function
The function has no additional parameters.

Response structure from the function
The function returns the following structure:

SI_T_NETWORK_MODE tMode;

where:

tMode The network mode of the system which is one of the following:
• SI_C_NETWORK_MODE_ON
• SI_C_ NETWORK _MODE_SLEEP
• SI_C_ NETWORK _MODE_OFF
• SI_C_ NETWORK _MODE_SUBSCRIPTION

Error codes returned
SI_E_NOERROR

Related functions
SI_C_SET_ NETWORK _MODE

3.5.20 SI_C_SET_NETWORK_MODE
Purpose
Set the network mode of the system.

Availability
This function is available in system mode: CONGRESS.

Parameter structure for the function
The function requires the following input parameters:

SI_T_NETWORK_MODE tMode;

where:

tMode The network mode of the system which is one of the following:
• SI_C_NETWORK_MODE_ON
• SI_C_ NETWORK _MODE_SLEEP
• SI_C_ NETWORK _MODE_OFF
• SI_C_ NETWORK _MODE_SUBSCRIPTION

DCN Next Generation Open Interface Release 4.1 en | 53

Bosch Security Systems | 2013 March

Response structure from the function
The function has no response parameters.

Error codes returned
SI_E_NOERROR
SI_E_WRONG_PARAMETER

Related functions
SI_C_GET_NETWORK_MODE

Update notifications
SI_C_NETWORK_MODE

3.5.21 SI_C_START_MON_SI
Purpose
Function to start the monitoring behavior of the SI application.

Availability
This function is available in system mode: MAINTENANCE, CONFIG and CONGRESS.

Parameter structure for the function
The function has no additional parameters.

Response structure from the function
The function returns the following structure:

WORD wNrOfInstances

where:

wNrOfInstances The value of the update use count for the SI application at the
end of the function handling. It contains the number of times a
remote PC has connected over the same communication
medium.

Error codes returned
SI_E_NOERROR
SI_E_REGISTER_RFS_FAILED

Related functions
SI_C_STOP_MON_SI

3.5.22 SI_C_STOP_MON_SI
Purpose
Function to stop monitoring the behavior of the SI application.

Availability
This function is available in system mode: MAINTENANCE, CONFIG and CONGRESS.

Parameter structure for the function
The function has no additional parameters.

Response structure from the function
The function returns the number of instances.

Error codes returned
SI_E_NOERROR
SI_E_NOT_INCONTROL

Related functions
MM_C_START_MON_SI

3.6 System Installation (SI) notifications

3.6.1 Introduction
This chapter defines the set of update notifications concerning SI send by the CCU. Each
description is according to the definition given in section 3.4.1.1.

DCN Next Generation Open Interface Release 4.1 en | 54

Bosch Security Systems | 2013 March

3.6.1.1 Unit/user event relations
As for the SC application, update notifications for SI are also the results of user actions done
on the actual units. This section gives a unit/user event matrix for the SI application in which
the possible user events are linked with the corresponding update notification(s). For some
events also the required remote functions to continue the System Installation process are
given.

The update notifications themselves are described in the remaining sections of this chapter.

UNIT-EVENT MATRIX

Event Update Notification Continue with remote function

Installation not yet started

Press a Soft-key on a
unit

<None>

Started Installation with SI_C_START_INSTALL (SI_C_GLOBAL_INSTALL_MODE)

Press a Soft-key on a
unit

SI_C_REGISTER_UNIT SI_C_SELECT_UNIT
See example-1 in Appendix D

Started Installation with SI_C_START_INSTALL (SI_C_OPERATIONAL_INSTALL_MODE)

Press a Soft-key on a
unit

<None>

3.6.2 SI_C_REGISTER_UNIT
Purpose
Notifies the remote controller that during global installation (which implies that the CCU is in
config mode, see SI_C_START_INSTALL section 3.5.2) a soft key is pressed on an
installable unit. An installable unit is a unit, which can be assigned with a seat number.

An overview of installable unit types is given in section 3.5.4.

The remote controller should use this update to assign a seat number to the unit identifier
given with this update notification.

Notify structure with this update
The update comes with the following structure:

typedef struct

{

 WORD wUnitId;

 BYTE byUnitType;

} SI_T_UNIT_STRUCT;

where:

wUnitId The unit identifier of a unit. Also called unit-number.

byUnitType The type of the unit. The different unit types possible are the
installable unit types given in section 3.5.4.

3.6.3 SI_C_MICROPHONE_GAIN
Purpose
Notifies the remote controller the microphone gain of a unit has been changed

where:

wUnitId The unit identifier of a unit. Also called unit-number.

wGain The microphone sensitivity/gain setting for the unit in the

DCN Next Generation Open Interface Release 4.1 en | 55

Bosch Security Systems | 2013 March

range 0..15. The values 0 up until 15 correspond with a
microphone sensitivity setting change of -6dB up until 9dB in
steps of 1 dB.
The default value of the microphone sensitivity is
DCNC_MICROPHONE_GAIN_DEFAULT.

3.6.4 SI_C_MICROPHONE_GAIN _ RESET
Purpose
Notifies the remote controller that the microphone gain for all units has been reset.

where:

wGain The microphone sensitivity/gain setting for the unit in the
range 0..15. The values 0 up until 15 correspond with a
microphone sensitivity setting change of -6dB up until 9dB in
steps of 1 dB.
The default value of the microphone sensitivity is
DCNC_MICROPHONE_GAIN_DEFAULT.

3.6.5 SI_C_WAP_SETTINGS
Purpose
Notifies the remote controller the settings of WAP. This notification is send after the settings of
a WAP has been changed.

Notify structure with this update
The update comes with the following structure:

typedef struct

{

 UNITID tUnitId;

 SI_T_CARRIER byCarrier;

 SI_T_WIRELESS_POWERLEVEL byPowerLevel;

 BYTE byOptions;

} SI_T_WAP_SETTINGS;

where:

tUniId Reserved. (The unit identifier of a WAP.). Will be
DCNC_UNASSIGNED_UNIT.

byCarrier The carrier of the WAP which is one of the following:
• SI_C_CARRIER_BAND_1
• SI_C_CARRIER_BAND_2
• SI_C_CARRIER_BAND_3

byPowerLevel The coverage of the WAP which is one of the following:
• SI_C_POWERLEVEL_OFF
• SI_C_POWERLEVEL_LOW
• SI_C_POWERLEVEL_MEDIUM
• SI_C_POWERLEVEL_HIGH

byOptions The options field is, at least, equal to:
• WAP_ENABLE_LANGUAGE_DISTRUBUTION

Additionally the following value can be set when Wireless
encryption is enabled:

• WAP_ENABLE_ENCRYPTION

DCN Next Generation Open Interface Release 4.1 en | 56

Bosch Security Systems | 2013 March

3.6.6 SI_C_WIRELESS_SETTINGS
Purpose
Notifies the remote controller the wireless settings of the system. This notification is send after
the wireless settings of the system has been changed.

Notify structure with this update
The update comes with the following structure:

typedef struct

{

 BYTE bySystemId;

 BYTE byRepetitions;

} SI_T_WIRELESS_SETTINGS;

where:

bySystemId The system identifier. Range 0…15

NOTE: The system identifier is not only the wireless system
identifier, but the system identifier used throughout the entire
system.

byRepetitions The number of repetitions within the wireless communication
path. Range 0…2

3.6.7 SI_C_NETWORK_MODE
Purpose
Notifies the remote controller the network mode of the system. This notification is send after
the network mode of the system has been changed.

Notify structure with this update
The update comes with the following structure:

SI_T_NETWORK_MODE tMode;

where:

tMode The network mode of the system which is one of the following:
• SI_C_NETWORK_MODE_ON
• SI_C_ NETWORK _MODE_SLEEP
• SI_C_ NETWORK _MODE_OFF
• SI_C_ NETWORK _MODE_SUBSCRIPTION

DCN Next Generation Open Interface Release 4.1 en | 57

Bosch Security Systems | 2013 March

4. DELEGATE DATABASE

4.1 Introduction
The Delegate Database Remote Interface is part of the DCN Next Generation software that
allows for another controlling entity outside the CCU, not being the DCN Next Generation
Control PC, to use the Delegate Database application.

The Database (DB) application allows users to compile a comprehensive database of
information relating to participants at a conference or meeting.

4.2 Remote Functions

4.2.1 DB_C_START_APP
Purpose
Indicate the CCU that the remote controller wants to communicate with the delegate database
in the CCU.

When the execution of this remote function is omitted, all other remote database functions
have no effect and will return the error DB_E_APP_NOT_STARTED.

Availability
This function is available in CCU system mode congress.

Parameter structure for the function
The function requires the following structure as parameters.

typedef struct

{

 BYTE byControlType;

} DB_T_APP_CONTROL;

where:

byControlType Identify that the remote controller likes to perform actions on the
database of the CCU. Valid values are:

• DB_C_CONTROL The remote controller likes to have
control over the database of the CCU.

Note that the second start of the application (without a stop) always results in an error.

Response structure from the function
The function has no response parameters.

Error codes returned
DB_E_NOERROR
DB_E_INCONTROL_OTHER_CHANNEL
DB_E_INCONTROL_THIS_CHANNEL
DB_E_ILLEGAL_CONTROL_TYPE

Related functions
DB_C_STOP_APP

4.2.2 DB_C_STOP_APP
Purpose
Indicate the CCU that the remote controller no longer requires to access the database inside
the CCU. A call to this function does not clear the database. The database present remains
active till the CCU is restarted or accessed by the database functions (after first calling
DB_C_START_APP).

Note that: Upon communication loss this function will be activated, if
DB_C_START_APP was activated.

DCN Next Generation Open Interface Release 4.1 en | 58

Bosch Security Systems | 2013 March

Availability
This function is available in CCU system mode congress.

Parameter structure for the function
The function has no additional parameters.

Response structure from the function
The function has no response parameters.

Error codes returned
DB_E_NOERROR
DB_E_APP_NOT_STARTED
DB_E_NOT_INCONTROL

Related functions
DB_C_START_APP

4.2.3 DB_C_MAINT_CCU
Purpose
The delegate database in the CCU can be changed using this remote function.

Availability
This function is available in CCU system mode congress. However, if another application is
making use of the delegate database inside the CCU, e.g. Voting or Access Control, this
function will return the error code DB_E_DELEGATE_DATA_BLOCKED

Parameter structure for the function
typedef struct

{

 BOOLEAN bFirstCluster;

 BOOLEAN bLastCluster;

 BYTE byPinSize;

 WORD wFillLevel;

 DB_T_PERDELEGATE DelCluster[DB_C_MAX_N_DL_DEL_REC];

} DB_T_CCUMAINREC ;

with DB_T_PERDELEGATE defined as:

typedef struct

{

 WORD lDelId;

 DWORD lCard;

 DWORD lPin;

 WORD wUnitNr;

 BYTE byDeskLang;

 DWORD lVWeight;

 BOOLEAN bMicAut;

 BOOLEAN bVotingAut;

 BOOLEAN bInterAut;

 CHAR szSLine [DBSC_NCHAR_SCREENLINE];

} DB_T_PERDELEGATE;

where:

bFirstCluster Indicates if this block is the first cluster.

bLastCluster Indicates if this block is the last cluster.

byPinSize Indicated current pin code size. Possible values are 3,
4 and 5

wFillLevel The DelCluster array is filled with wFillLevel entries.

DelCluster; If an item in this array has an invalid value, the error
DB_E_WRONG_PARAMETER is returned. The
following items per array entry are available:

DCN Next Generation Open Interface Release 4.1 en | 59

Bosch Security Systems | 2013 March

lDelId Delegate identification number. A unique number in
the range 1..DBSC_MAX_DELEGATE. It is
recommended to use Delegate Id’s in an increasing
order, starting from 1.

lCard Delegate card code. A unique number in the range
1..MAX_CARD_CODE or DB_C_NO_CARD. This is
the numeric code present on the identification card
handed over to the delegate and which is to be used
in combination with attendance registration and
access control.

lPin Delegate pin code. A numeric value in the range
111...555555. PIN codes or DB_C_NO_PIN are used
for attendance registration and access control, but do
not have to be unique.

wUnitNr The unit number that the delegate is assigned to by
default. This unit number must equal UnitId retrieved
with SC_C_GET_CCU_CONFIG or equal to
DCNC_UNASSIGNED_UNIT.

byiDeskLang Delegate display language. One of:
• 0: DCNC_VER_ENGLISH
• 1..5: Configurable

lVWeight Delegate vote weight. A value in the range
1..MAX_VOTE_WEIGHT to be used by the voting
application.

bMicAut TRUE: this delegate has microphone authorization.
FALSE: this delegate has no micro. Authorization.

bVotingAut TRUE: this delegate has voting authorization.
FALSE: this delegate has no voting authorization.

bInterAut TRUE: this delegate has intercom authorization.
FALSE: this delegate has no intercom authorization.

szSLine Delegate screen line. A string to represent a delegate
e.g. on a Hall Display.

If more than DB_C_MAX_N_DL_DEL_REC records should be send to the CCU, more calls of
this remote function will be needed. In this case the ‘bFirstCluster’ and ‘bLastCluster’ indicate
the start and termination of the complete delegate database download.

Response structure from the function
The function has no response parameters.

Error codes returned
DB_E_NOERROR
DB_E_SET_PINSIZE_FAILED
DB_E_DELEGATE_LIST_TOO_BIG
DB_E_INSERT_DELEGATE_FAILED
DB_E_UPDATE_DELEGATE_FAILED
DB_E_DELEGATE_DATA_BLOCKED
DB_E_PENDING_REQUEST
DB_E_APP_NOT_STARTED
DB_E_WRONG_PARAMETER
DB_E_NOT_INCONTROL

5 Although the PIN code is identified as a variable of the type ‘long’, the real PIN code is a 6-based number. This
means that only digits 1 - 5 are allowed to be part of the PIN code. Besides, the PIN code also depends on the
iPinSize variable. If e.g. iPinSize is 3, the possible values for lPin range from 111 to 555. If iPinSize is 5 then lPin
ranges from 11111 to 55555. So, lPin must always contain iPinSize digits in the range 1..5.

DCN Next Generation Open Interface Release 4.1 en | 60

Bosch Security Systems | 2013 March

Related functions
DB_C_START_APP
DB_C_DOWNLOAD_CCU
DB_C_CLEAR_CCU
DB_C_CCU_APPLY_ONE

4.2.4 DB_C_DOWNLOAD_CCU
Purpose
The delegate database in the CCU can be filled using this remote function.

Availability
This function is available in CCU system mode congress.

Parameter structure for the function
The same structures are used as in the function DB_C_MAINT_CCU.

Response structure from the function
The function has no response parameters.

Error codes returned
DB_E_NOERROR
DB_E_SET_PINSIZE_FAILED
DB_E_DELEGATE_LIST_TOO_BIG
DB_E_INSERT_DELEGATE_FAILED
DB_E_UPDATE_DELEGATE_FAILED
DB_E_DELEGATE_DATA_BLOCKED
DB_E_PENDING_REQUEST
DB_E_APP_NOT_STARTED
DB_E_WRONG_PARAMETER
DB_E_NOT_INCONTROL

Related functions
DB_C_START_APP
DB_C_MAINT_CCU
DB_C_CLEAR_CCU
DB_C_CCU_APPLY_ONE

4.2.5 DB_C_CLEAR_CCU
Purpose
This function clears the delegate database in the CCU.

Availability
This function is available in CCU system mode congress. As with DB_C_MAINT_CCU this
function returns the error DB_E_DELEGATE_DATA_BLOCKED if another application is
currently using the delegate database in the CCU.

Parameter structure for the function
The function has no additional parameters.

Response structure from the function
The function has no response parameters.

Error codes returned
DB_E_NOERROR
DB_E_DELEGATE_DATA_BLOCKED
DB_E_PENDING_REQUEST
DB_E_APP_NOT_STARTED
DB_E_NOT_INCONTROL

DCN Next Generation Open Interface Release 4.1 en | 61

Bosch Security Systems | 2013 March

Related functions
DB_C_START_APP
DB_C_MAINT_CCU
DB_C_DOWNLOAD_CCU
DB_C_CCU_APPLY_ONE

4.2.6 DB_C_CCU_APPLY_ONE
Purpose
With this function it is possible to add or update just one record in the delegate database in
the CCU.

Note that using this function you can only add or update a record of an existing database on
the CCU. You cannot create a database using this function.

The delegateId as present in the structure is used to determine if the record will be added or
updated:

• When the delegateId is not present in the database, the record will be added to the
database.

• When the delegateId already exist in the database, the record of that delegate will be
updated. Only the following fields may be changed:

wUnitNr Unit number where the delegate resides
byDesklang Desk language of the delegate
lVWeight Voting weight of the delegate
bMicAut Microphone authorization
bVotingAut Voting authorization
bInterAut Intercom authorization
szSline The screen line of the delegate

All other fields of the structure must have the same value as the information stored in the
database.

Availability
This function is available in CCU system mode congress.

Parameter structure for the function
DB_T_PERDELEGATE tDelegate (for description see section 4.2.3)

Response structure from the function
The function has no response parameters.

Error codes returned
DB_E_NOERROR
DB_E_UPD_DEL_UNIT_IN_USE
DB_E_UPD_DEL_CARD_CHANGED
DB_E_UPD_DEL_PIN_CHANGED
DB_E_UPDATE_DELEGATE_FAILED
DB_E_INSERT_DELEGATE_FAILED
DB_E_NO_DATABASE
DB_E_APP_NOT_STARTED
DB_E_WRONG_PARAMETER
DB_E_NOT_INCONTROL

Related functions
DB_C_START_APP
DB_C_MAINT_CCU
DB_C_DOWNLOAD_CCU
DB_C_CLEAR_CCU

DCN Next Generation Open Interface Release 4.1 en | 62

Bosch Security Systems | 2013 March

5. MICROPHONE MANAGEMENT

5.1 Introduction
The Microphone Management Remote Interface is part of the DCNNG software, which allows
for another controlling entity outside the CCU, not being the DCNNG Control PC, to use the
Microphone Management application.

5.1.1 Remote Microphone Management Control
Microphone Management is the application that allows for controlling the microphones in the
conference hall. Typical control issues are e.g.: turning a Microphone On, adding a delegate to
the RTS list, changing the Operation Mode etc.

Controlling microphones with a remote interface is by means of calling a defined set of
Remote Functions and acting upon a defined set of Update Notifications. The general concept
of Remote Functions and Update Notifications is described in chapter 2. This chapter also
describes the protocol and hardware conditions concerning the remote interface.

Together with this remote interface, there are up to three locations in a full-connected CCU
where MM can be influenced. These locations are:

• The remote interface or the remote controller (customer build client or DCNNG Control PC)
uses the TCP/IP interface. The remote controller makes Remote Function calls for
microphone management.

• The actual units that handle their microphone keys.

To get a full operational system both the DCNNG control PC and the remote controller must
register themselves to the CCU, so they will receive update messages from the CCU.

Remote functions coming from either the DCNNG control PC or the remote controller initiates
in the CCU an update of the internal lists. During the update, notifications are generated and
sent to both the DCNNG control PC and the remote controller. In this way both remote control-
lers get the update information about the actions performed on either the DCNNG control PC
or the remote controller.

During the processing of remote functions on the CCU, the update messages are created and
transmitted. This implies that the response information of a remote function can be received
after the reception of an update notification. The remote controller must wait for the response
of the remote function. After reception of the response appropriate action should be taken
upon the error code returned. The notifications received during the wait for the response may
be processed directly.

Requests coming from a unit are processed and the lists updated. During the update,
notifications are generated and sent to all registered PC’s. In the system mentioned above,
both the DCNNG control PC and the remote controller will receive the same update
notifications.

This document gives the set of Remote Functions and the set of Update Notifications
concerning Microphone Management. The relation between Remote Function, sent by the
remote controller, and Update Notifications is given in the description of each separate
Remote Function. The relation between unit events and Update Notifications is given in
section 5.3.1.2. At last, there is a relation between remote functions sent by the DCNNG
control PC and update notifications. Since both remote controller and DCNNG control PC
receive all update notifications, the set of update notifications therefore also contains those
that are the result of a remote function from the DCNNG control PC.

5.1.2 Microphone List and Mode Management
Handling the microphones in the system is basically a way of managing the various
microphone lists identified inside the CCU and choosing the appropriate operation mode. The
Microphone Management application has five microphone lists, which will be explained in the
table below:

DCN Next Generation Open Interface Release 4.1 en | 63

Bosch Security Systems | 2013 March

List Explanation

Notebook The notebook contains units having special privileges for turning on
their microphone. This list always contains the Chairman units in the
system. Other units can only be added to the notebook from within the
MM application on a DCNNG Control PC.

The notebook exists in all operation modes.

Speakers list
(SPK)

The speakers list contains the normal delegate units that are currently
allowed to speak. Note that this does not mean that those units have
their microphone switched on. Depending on the operation mode it is
possible that a unit is in the speakers list with its microphone switched
off.

The speakers list exists in all operation modes except for the mode
Delegate with Voice activation.

Request to Speak
list
(RTS)

The request to speak list contains the unit/delegate combinations that
requested to have their microphone switched on so they can speak.
Depending on the operation mode an unit/delegate is automatically
promoted to the speakers list or by means of an operator action.

The request to speak list exists in the modes Operator with Request list,
Operator with Request and Response list and Delegate with Request
list.

Comment
Request list
(CR)

The comment request list, or response request list, contains the
unit/delegate combinations. A delegate, who responses immediate on
the current speaker, will come in the comment list. This comment
request list is to prevent them from being added at the end of the
normal request to speak list and thus loosing the urgency of the
response.

The comment request list is only available in the mode Operator with
Request and Response list.

Comment
Speakers list
(CS)

The comment speakers list, or response speakers list, contains the
units that are promoted from the comment request list to make their
response (i.e. they are allowed to speak now). Promoting a unit from the
comment request list to the comment speakers list can only be done by
means of an operator action.

The comment speakers list is only available in the mode Operator with
Request and Response list.

In the table below the operation modes are identified by the value used in the remaining part
of this document. This table also describes the enabling/disabling of sets of remote functions
and update notifications as result of choosing a specific operation mode.

DCN Next Generation Open Interface Release 4.1 en | 64

Bosch Security Systems | 2013 March

Mode Mode description & Group enable/disable
OPERATOR WITH REQUEST LIST
equals
MM_C_OPERATOR_WITH_REQ_LIST

Manual mode. The operator (using the remote
controller) controls the RTS list. Delegates are
always added to the RTS list and the operator
determines which delegate may speak.
Special features are to disable the cancel of an
request and to turn off the microphone by the
delegates (see section 5.2.2.7)
• enables all RTS functions/notifications
• enables all SPK functions/notifications
• disables all CR functions/notifications
• disables all CS functions/notifications

DELEGATE WITH REQUEST LIST
equals
MM_C_DELEGATE_WITH_REQ_LIST

Open delegate mode. Either the operator or the
delegates can do all functions. When a delegate
turns his microphone off and there are still delegates
present in the RTS list, then an automatic shift will
take place.
Special features are to disable the cancel of an
request.
• enables all RTS functions/notifications
• enables all SPK functions/notifications
• disables all CR functions/notifications
• disables all CS functions/notifications

DELEGATE WITH OVERRIDE
equals
MM_C_DELEGATE_WITH_OVERRIDE

Override mode. In this mode there is no RTS-list.
Whenever a delegate presses his micro-button, he is
directly able to speak. When the SPK list was full,
then the oldest speaker will be removed to make
place for the new delegate.
• disables all RTS functions/notifications
• enables all SPK functions/notifications
• disables all CR functions/notifications
• disables all CS functions/notifications

DELEGATE WITH VOICE ACTIVATION
equals
MM_C_DELEGATE_WITH_VOICE

Voice mode. The CCU automatic focus on the
delegate currently speaking. In this mode there is no
RTS list and SPK list. Also none of the chairmen
microphones will be notified.
• disables all RTS functions/notifications
• disables all SPK functions/notifications
• disables all CR functions/notifications
• disables all CS functions/notifications
• disables all microphone on/off functions
• disables all notebook functions/notifications

OPERATOR WITH REQUEST AND
RESPONSE LIST
equals
MM_C_OPERATOR_WITH_COMMENT_LI
ST

Comment mode. The operator (using the remote
controller) controls the RTS and CR lists. Delegates
are always added to the RTS list for normal requests
and to the CR list for responses. The operator
determines which delegate may speak and/or make
a response. In this mode the maximum number of
active microphones must be set to 1.
Special features are to disable the cancel of an
request and to turn off the microphone by the
delegates (see section 5.2.2.7)
• enables all RTS functions/notifications
• enables all CR functions/notifications
• enables all SPK functions/notifications
• enables all CS functions/notifications

DELEGATE WITH PUSH TO TALK Push to talk mode. In this mode there is no RTS-list.

DCN Next Generation Open Interface Release 4.1 en | 65

Bosch Security Systems | 2013 March

Equals
MM_C_DELEGATE_WITH_PUSHTOTALK

Whenever a delegate presses his micro-button, he is
directly able to speak in case the SPK list is not full.

• disables all RTS functions/notifications
• enables all SPK functions/notifications
• disables all CR functions/notifications
• disables all CS functions/notifications

The SPK functions and notifications mentioned in the table are described in respectively,
sections 5.2.3 and 5.3.3.

The CS functions and notifications mentioned in the table are described in respectively,
sections 5.2.4 and 5.3.4.

The RTS functions and notifications mentioned in the table are described in respectively,
sections 5.2.5.4 and 5.3.6.

The CR functions and notifications mentioned in the table are described in respectively,
sections 5.2.7 and 5.3.7.

5.2 Remote Functions

5.2.1 Introduction
This chapter describes the various remote functions needed to perform microphone
management on the system.

5.2.1.1 Preconditions
The remote functions for the MM application acting on any of the microphone lists always use
the UnitId to perform the requested functionality. For the Request to speak list or Comment
Request list functions also a DelegateId is required. This UnitId and DelegateId must be
retrieved respectively set, using the appropriate functions of the SC/SI Remote Interface as
described in chapter 3.

5.2.1.2 Remote function item explanation
Each description consists of the following items:

• Purpose
 A global description of the purpose of the function.

• Parameter structure for the function
 The input parameters needed to fulfill the function. When the function
requires no parameters, no structure is described here. The type definitions of the basic
types used to build up the input parameter structure are given in chapter 2 .

• Response structure from the function
 The output information coming from the function called. This information is
only valid when the ‘wError’ field of the received response information equals
MM_E_NOERROR.

• Error codes returned
 The possible error values returned in the ‘wError’ field of the response
information for this remote function. All different error codes are described in appendix
Appendix C Error Codes.

• Update notifications
 The update notifications, which are generated during the execution of the
remote function. When there are no notifications generated, then this part will be omitted.

• Related functions
 The related function in conjunction with the function described. It refers to
other remote functions and to related update notifications.

DCN Next Generation Open Interface Release 4.1 en | 66

Bosch Security Systems | 2013 March

5.2.2 MM General functions

5.2.2.1 MM_C_START_MM
Purpose
Indicates the CCU that the remote controller wants updates notifications from the MM applica-
tion inside the CCU. After receiving this function the CCU increments the update use count.
As long as the update use count is greater than zero, the CCU will sent update notifications to
the remote controller. Update notifications are sent upon state changes due to actions from
the control PC(s) and all microphone actions on the units.

When you omit the execution of this remote function, you can still execute remote functions,
but no update notifications will be sent to the remote controller.

Parameter structure for the function
The function has no additional parameters.

Response structure from the function
The function returns the following structure:

WORD wNrOfInstances

where:

wNrOfInstances The value of the update use count for the MM application at the
end of the function handling. It contains the number of times a
remote PC has connected over the same communication
medium. E.g. the first time the MM_C_START_MM function is
called, it contains the value 1.

Error codes returned
MM_E_NOERROR
MM_E_OPEN_CLOSE_FAILED

Related functions
MM_C_STOP_MM

5.2.2.2 MM_C_STOP_MM
Purpose

Indicates the CCU that the remote controller no longer requires updates from the MM applica-
tion inside the CCU. After receiving this function the CCU decrements the update use count.
As long as the update use count is still greater than zero, the CCU remains sending the
update notifications to the remote controller.

A call to this function when the update use count is already zero will keep the use count to
zero and nothing shall happen.

When the use count reaches zero then the microphone management application inside the
CCU returns to its stand-alone operation. This return involves a change in the following
settings of the MM-application:

Setting Parameter Section Destination of change
wOperationMode 5.2.2.5 When the operation mode is

MM_C_OPERATOR_WITH_REQ_LIST or
MM_C_OPERATOR_WITH_COMMENT_LIST the
mode will be changed to
MM_C_DELEGATE_WITH_REQ_LIST. All other modes
will remain active.

wActiveMics 5.2.2.6 When the number of active microphones is 3, this will
be extended to 4. This implies also changes of the SPK
and RTS lists.

bAllowMicroOff 5.2.2.7 This value is set to TRUE. Note that this value is only
used in the modes

DCN Next Generation Open Interface Release 4.1 en | 67

Bosch Security Systems | 2013 March

MM_C_OPERATOR_WITH_REQ_LIST and
MM_C_OPERATOR_WITH_COMMENT_LIST.

All other MM-settings remain active while functioning in stand-alone mode.

Note that: Upon communication lost this function will be activated, if
MM_C_START_MM was activated. The activation of this function is repeated
till the update use count becomes zero.

Parameter structure for the function
The function has no additional parameters.

Response structure from the function
The function has the same response structure as the remote function MM_C_START_MM
(section 5.2.2.1).

Error codes returned
MM_E_NOERROR
MM_E_OPEN_CLOSE_FAILED

Related functions
MM_C_START_MM

5.2.2.3 MM_C_START_MON_MM
Purpose
Function to start the monitoring behavior of the Microphone Management application. It is not
allowed/possible to control settings of Microphone Management.

Parameter structure for the function
The function has no additional parameters.

Response structure from the function
The function returns the following structure:

WORD wNrOfInstances

where:

wNrOfInstances The value of the update use count for the MM application at the
end of the function handling. It contains the number of times a
remote PC has connected over the same communication
medium. E.g. the first time the MM_C_START_MON_MM
function is called, it contains the value 1.

Error codes returned
MM_E_NOERROR

Related functions
MM_C_STOP_MM
MM_C_STOP_MON_MM

5.2.2.4 MM_C_STOP_MON_MM
Purpose
Function to stop monitoring the behavior of the Microphone Management application.

Parameter structure for the function
The function has no additional parameters.

Response structure from the function
The function returns the same response structure as the remote function
MM_C_START_MON_MM (section 5.2.2.3)

Error codes returned
MM_E_NOERROR

DCN Next Generation Open Interface Release 4.1 en | 68

Bosch Security Systems | 2013 March

Related functions
MM_C_START_MM
MM_C_START_MON_MM

5.2.2.5 MM_C_SET_MIC_OPER_MODE
Purpose
This function allows the remote controller to change the microphone operation-mode.

Parameter structure for the function
The function requires the following structure as parameter:

WORD wOperationMode;

where:

wOperationMode The operation mode of the MM application which is one of the
following:

• MM_C_OPERATOR_WITH_REQ_LIST
• MM_C_DELEGATE_WITH_REQ_LIST
• MM_C_DELEGATE_WITH_OVERRIDE
• MM_C_DELEGATE_WITH_VOICE
• MM_C_OPERATOR_WITH_COMMENT_LIST
• MM_C_DELEGATE_WITH_PUSHTOTALK

If the operation mode is set to MM_C_OPERATOR_WITH_COMMENT_LIST, the maximum
number of active microphones will be set to 1 if not done by the operator.

Response structure from the function
The function has no response parameters.

Error codes returned
MM_E_NOERROR
MM_E_ILLEGAL_MIC_OPER_MODE (unknown mode selected)

Update notifications
MM_C_SET_MIC_OPER_MODE_ON_PC
and various SPK, CS, RTS and/or CR updates depending on the difference between the old
and new mode set.

5.2.2.6 MM_C_SET_ACTIVE_MICS
Purpose
This function allows the remote controller to change the maximum number of active
microphones (SPK list length).

When the number of active microphones is increased, the created (empty) places will be filled
with entries coming from the RTS list if the selected mode equals
MM_C_DELEGATE_WITH_REQ_LIST.

When the number of active microphones is reduced, the following rules are applied if the
number of speakers in the SPK list is greater than the final size.

• If there are speakers in the list with their microphone off, then first of these will be
removed.

• When there are only speakers in the list with their microphone on, the first unit in the list
will be turned off and removed from the list

When the microphone operation-mode equals MM_C_OPERATOR_WITH_COMMENT_LIST
and the maximum number of active microphones is increased to more than 1 an error is
returned.

Parameter structure for the function
The function requires the following structure as parameter:

WORD wActiveMics;

DCN Next Generation Open Interface Release 4.1 en | 69

Bosch Security Systems | 2013 March

where:

wActiveMics The number of active microphones, which can be on at the
same time. Valid values are in the range 1…4.

Response structure from the function
The function has no response parameters.

Error codes returned
MM_E_NOERROR
MM_E_ILLEGAL_MAX_ACT_MICS

Update notifications
MM_C_SET_ACTIVE_MICS_ON_PC
and various SPK, CS, RTS and/or CR updates depending on the change in size of the
speakers list length.

5.2.2.7 MM_C_GET_SETTINGS
Purpose
Retrieve the general settings from the MM-application. This function can be used to get the
initial state of the operation mode and the number of active microphones as set using the
button on the front panel of the CCU.

Parameter structure for the function
The function has no additional parameters.

Response structure from the function
The function returns the following structure:

typedef struct

{

 WORD wOperationMode;

 WORD wActiveMics;

 WORD wMaxRTSListLen;

 BOOLEAN bAllowCancelRequests;

 BOOLEAN bAllowMicroOff;

 WORD wAttentionTone;

 BOOLEAN bAmbientMicCtrl;

 BOOLEAN bAutoMicOff;

 BOOLEAN bPrioCancelAll;

} MM_T_CCU_GLOBAL_SETTINGS;

where:

wOperationMode The operation mode of the MM application which is one of the
following:

• MM_C_OPERATOR_WITH_REQ_LIST
• MM_C_DELEGATE_WITH_REQ_LIST
• MM_C_DELEGATE_WITH_OVERRIDE
• MM_C_DELEGATE_WITH_VOICE
• MM_C_OPERATOR_WITH_COMMENT_LIST
• MM_C_DELEGATE_WTH_PUSHTOTALK

For more information about the different modes see section
5.2.2.5.

wActiveMics The number of active delegate microphones, which can be on
at the same time (chairman micro’s are not counted). Range
1…4

wMaxRTSListLen The maximum Request To Speak list length. Range: 0…100.

bAllowCancelRequest TRUE: A Delegate is able to cancel a request to speak using
the Micro-key on the unit.
FALSE: A Delegate is not able to cancel a request to speak.
 (This parameter is only valid within the operation modes
MM_C_OPERATOR_WITH_REQ_LIST,

DCN Next Generation Open Interface Release 4.1 en | 70

Bosch Security Systems | 2013 March

MM_C_DELEGATE_WITH_REQ_LIST and
MM_C_OPERATOR_WITH_COMMENT_LIST).

Note: A Delegate is always able to cancel a comment request

bAllowMicroOff TRUE: A Delegate is able to turn off the microphone on the
unit.
FALSE: A Delegate is not able to turn off the microphone. This
implies that the remote controller can only turn off the micro
(only valid for the operation modes
MM_C_OPERATOR_WITH_REQ_LIST and
MM_C_OPERATOR_WITH_COMMENT_LIST).

wAttentionTone The following attention tones settings are available:

MM_C_ATTENTION_OFF:

No attention is generated when the priority key is pressed.

MM_C_ATTENTION_TONE1 or
MM_C_ATTENTION_TONE2 or
MM_C_ATTENTION_TONE3:

An attention tone (tone 1, 2 or 3) is generated when the
priority key is pressed on a chairman-unit.

bAmbientMicCtrl TRUE: The ambient microphone control is enabled. Ambient
mic. control means that the ambient mic. is turned on when
the last microphone of all units in the conference hall is
switched off and it is turned off when the first microphone is
switched on.
FALSE: The ambient microphone control is disabled, i.e. the
ambient mic. will always be switched off.

bAutoMicOff TRUE: Switches active microphones automatically off after 30
seconds no speech. Chairman units and interpreter desks are
excluded.
FALSE: The auto mic off function is disabled.

bPrioCancelAll

TRUE: The microphone of delegates will stay off after the prio
of the chairman is released.

FALSE: The microphones of delegates will be turned on after
the prio of the chairman is released.

Error codes returned
MM_E_NOERROR

Related functions
MM_C_SET_SETTINGS

5.2.2.8 MM_C_SET_SETTINGS

Purpose
Set the general operating settings of the MM-application.

If the operation mode is set to MM_C_OPERATOR_WITH_COMMENT_LIST, the value for
maximum number of active microphones will be omitted and the maximum number of active
microphones will be set to 1.

Parameter structure for the function
The structure to be passed along with this function is the same structure as the structure
received during the remote function MM_C_GET_SETTINGS (see 5.2.2.7).

Response structure from the function
The function has no response parameters.

DCN Next Generation Open Interface Release 4.1 en | 71

Bosch Security Systems | 2013 March

Error codes returned
MM_E_NOERROR
MM_E_ILLEGAL_MIC_OPER_MODE
MM_E_ILLEGAL_MAX_ACT_MICS
MM_E_ILLEGAL_MAX_RTS_LIST_LEN
MM_E_RTS_LIST_CHANGED
MM_E_DELETE_RTS_LIST_FAILED
MM_E_NOT_IN_CONTROL
MM_E_ILLEGAL_ATTENTION_TONE

Update notifications
MM_C_SET_SETTINGS_ON_PC
and various SPK, CS, RTS and/or CR updates depending on the settings made.

Related functions
MM_C_GET_SETTINGS

5.2.3 MM Speaker list functions
This section describes the functions to manipulate the speakers list.

5.2.3.1 MM_C_SET_MICRO_ON_OFF
Purpose
Control the microphone of a unit. This function gives the ability to turn the microphone of a unit
on or off. To describe the functionality included with this function several cases of this function
are described in the table below:

Case Action performed
Delegate unit micro on The unit is appended to the SPK list if possible.

Delegate unit micro off The units’ microphone is turned off, but the unit still
remains in the SPK list. To remove the speaker also from
the SPK list, use the remote call MM_C_SPK_REMOVE
(see section 5.2.3.3).

Delegate unit micro on
(already in the SPK list)

The units’ microphone is turned on. The unit remains in
the SPK list.

Chairman unit micro on The units’ microphone is turned on.

Chairman unit micro off The units’ microphone is turned off.

Parameter structure for the function
The function requires the following structure as parameter:

typedef struct

{

 WORD wUnitId;

 BOOLEAN bMicroOn;

} MM_T_MICRO_ONOFF;

where:

wUnitId Unit Identifier. Unit identifiers can be retrieved from the system
using the remote functions for System Config chapter 3.

bMicroOn TRUE to turn the microphone on,
FALSE to turn the microphone off

Response structure from the function
The function has no response parameters.

Error codes returned
MM_E_NOERROR
MM_E_SPEAKERS_LIST_FULL
MM_E_INSERT_SPEAKERS_LIST_FAILED

DCN Next Generation Open Interface Release 4.1 en | 72

Bosch Security Systems | 2013 March

MM_E_NOT_IN_SPL_OR_NOB
MM_E_UNIT_NOT_CONNECTED
MM_E_ILLEGAL_MIC_OPER_MODE
MM_E_ILLEGAL_MICRO_TYPE

Update notifications
MM_C_SPK_APPEND_ON_PC (delegate micro on and added to SPK)
MM_C_MICRO_ON_OFF (micro on/off and already in SPK)

Related functions
MM_C_SPK_APPEND
MM_C_SPK_REMOVE

5.2.3.2 MM_C_SPK_APPEND
Purpose
Add a unit to the end of the speakers list on the CCU. The addition of a unit to the SPK list
automatically implies that the microphone will be turned on.

Note that this function always adds the unit to the speakers list. Even if this unit is a chairman.
A good practice is to use the remote function MM_C_SET_MICRO_ON_OFF for managing
the microphones state.

When the unit is already present in the SPK list, an error is reported and the current
microphone status of the unit is unchanged.

The CS list, if present, will be cleared.

Parameter structure for the function
The function requires the following structure as parameter:

typedef struct

{

 WORD wUnitId;

} MM_T_SPK;

where:

wUnitId Unit Identifier

Response structure from the function
The function has no response parameters.

Error codes returned
MM_E_NOERROR
MM_E_ILLEGAL_MIC_OPER_MODE
MM_E_ILLEGAL_MICRO_TYPE
MM_E_UNIT_ALREADY_PRESENT
MM_E_SPEAKERS_LIST_FULL
MM_E_INSERT_SPEAKERS_LIST_FAILED
MM_E_UNIT_NOT_CONNECTED

Update notifications
MM_C_SPK_APPEND_ON_PC

Related functions
MM_C_SPK_REMOVE

5.2.3.3 MM_C_SPK_REMOVE
Purpose
Removes a speaker from the SPK list on the CCU. A removal of a unit from the SPK list
automatically implies that the units microphone will be turned off.

Parameter structure for the function
This function requires the structure MM_T_SPK as parameter. This structure is defined in
section 5.2.3.2.

DCN Next Generation Open Interface Release 4.1 en | 73

Bosch Security Systems | 2013 March

Response structure from the function
The function has no response parameters.

Error codes returned
MM_E_NOERROR
MM_E_ILLEGAL_MIC_OPER_MODE
MM_E_UNIT_NOT_PRESENT
MM_E_DELETE_SPEAKERS_LIST_FAILED

Update notifications
MM_C_SPK_REMOVE_ON_PC

Related functions
MM_C_SPK_APPEND

5.2.3.4 MM_C_SPK_CLEAR
Purpose
Clear all entries in the SPK list on the CCU. All delegate microphones are turned off. The
chairmen microphones remain in the same state.

Parameter structure for the function
The function has no additional parameters.

Response structure from the function
The function has no response parameters.

Error codes returned
MM_E_NOERROR

Update notifications
MM_C_SPK_CLEAR_ON_PC

Related functions
MM_C_SPK_APPEND

5.2.3.5 MM_C_SPK_GET
Purpose
Retrieve the complete contents of the Speakers list as present in the CCU.

Parameter structure for the function
The function has no additional parameters.

Response structure from the function
The function returns the following structure:

typedef struct

{

 WORD wNrOfSpk;

 MM_T_SPK_MICRO tSpkList[DBSC_MAX_SPEAKERLIST];

} MM_T_CCU_SPKLIST;

Where the MM_T_SPK_MICRO is defined as:

typedef struct

{

 WORD wUnitId;

 BOOLEAN bMicroOn;

} MM_T_SPK_MICRO;

where:

wNrOfSpk The number of SPK list entries actual present in the tSpkList
array. Only this amount of array elements is transmitted. This
value never exceeds the constant DBSC_MAX_SPEAKERLIST.

tSpkList [] Array holding the SPK list information. Each array element is
defined as a MM_T_SPK_MICRO structure, which is defined

DCN Next Generation Open Interface Release 4.1 en | 74

Bosch Security Systems | 2013 March

below.

wUnitId Unit identifier

bMicroOn TRUE if the microphone is currently on
FALSE if the microphone is currently off

Error codes returned
MM_E_NOERROR

Related functions
MM_C_SPK_APPEND

5.2.4 MM Comment Speaker list functions
This section describes the functions to manipulate the comment speakers list. Note that a
Comment Speaker can only be generated by shifting a Comment Request using the
MM_C_SHIFT_CR function (see also section 5.2.7.3).

5.2.4.1 MM_C_CS_REMOVE
Purpose
Removes a speaker from the CS list on the CCU. A removal of a unit from the CS list
automatically implies that the units’ microphone will be turned off.

Parameter structure for the function
This function requires the structure MM_T_SPK as parameter. This structure is defined in
section 5.2.3.2.

Response structure from the function
The function has no response parameters.

Error codes returned
MM_E_NOERROR
MM_E_ILLEGAL_MIC_OPER_MODE
MM_E_UNIT_NOT_PRESENT
MM_E_UNKNOWN_UNIT

Update notifications
MM_C_CS_REMOVE_ON_PC

5.2.4.2 MM_C_CS_GET
Purpose
Retrieve the complete contents of the Comment Speakers list as present in the CCU.

Parameter structure for the function
The function has no additional parameters.

Response structure from the function
The function returns the following structure:

typedef struct

{

 WORD wNrOfCS;

 MM_T_SPK_MICRO tCSList[DBSC_MAX_DELCS];

} MM_T_CCU_CSLIST;

where:

wNrOfCS The number of CS list entries actual present in the tCSList
array. This value never exceeds the constant
DBSC_MAX_DELCS.

tCSpkList [] Array holding the CS list information. Each array element is
defined as a MM_T_SPK_MICRO structure, which is defined in
5.2.3.5.

DCN Next Generation Open Interface Release 4.1 en | 75

Bosch Security Systems | 2013 March

Error codes returned
MM_E_NOERROR

5.2.5 MM Notebook list functions
This section describes the functions to manipulate the Notebook list.

Note: if the operation mode is set to MM_C_DELEGATE_WITH_VOICE the notebook is not
available (See 5.2.2.5 for operation mode).

5.2.5.1 MM_C_NBK_REMOVE
Purpose
Remove one entry from the Notebook as present in the CCU.

Parameter Structure for the function
The function requires the MM_T_NBK structure for input. This structure is defined in section
5.3.5.1.

Response structure from the function
The function has no response parameters.

Error codes returned
MM_E_NOERROR
MM_E_DELETE_NOTEBOOK_FAILED

Update notifications
MM_C_NBK_REMOVE_ON_PC

Related Functions
MM_C_NBK_SET
MM_C_NBK_GET

5.2.5.2 MM_C_NBK_CLEAR
Purpose
Clear the complete contents of the Notebook list

Parameter structure for the function
The function has no additional parameters.

Response structure from the function
The function has no response parameters.

Error codes returned
MM_E_NOERROR

Update notifications
MM_C_NBK_SET_ON_PC

Related Functions
MM_C_NBK_SET

5.2.5.3 MM_C_NBK_GET
Purpose
Retrieve the complete contents of the Notebook list as present in the CCU.

Parameter structure for the function
The function has no additional parameters.

Response structure from the function
The function returns the following structure:

typedef struct

{

 WORD wNrOfNbk;

 MM_T_NBK_MICRO tNbkList[DBSC_MAX_NOTEBOOKLIST];

} MM_T_CCU_NBKMICROLIST;

DCN Next Generation Open Interface Release 4.1 en | 76

Bosch Security Systems | 2013 March

Where the MM_T_NBK_MICRO is defined as:

typedef struct

{

 WORD wUnitId;

 WORD wMicroType;

 BOOLEAN bMicroOn;

} MM_T_NBK_MICRO;

where:

wNrOfNbk The number of NBK list entries actual present in the tNbkList
array. Only this amount of array elements is transmitted. This
value never exceeds the constant
DBSC_MAX_NOTEBOOKLIST.

tNbkList [] Array holding the NBK list information. Each array element is
defined as a MM_T_NBK_MICRO structure, which is defined
below.

wUnitId Unit Identifier

wMicroType The type of microphone handling for the notebook entry.
The following microphone types are valid for the
notebook entries:

• MM_C_VIP_CHAIRMAN
• MM_C_VIP_KEY
• MM_C_VIP_OPERATOR
• MM_C_VIP_VOICE
• MM_C_VIP_VCHAIR
• MM_C_CHAIRMAN_NO_AC
• MM_C_KEY_NO_AC
• MM_C_OPERATOR_NO_AC
• MM_C_VOICE_NO_AC
• MM_C_VCHAIR_NO_AC
• MM_C_VIP_PTTCHAIRMAN
• MM_C_VIP_PTT
• MM_C_VIP_PTTCHAIRMAN_NO_AC
• MM_C_VIP_PTT_NO_AC

bMicroOn TRUE if the microphone is currently on
FALSE if the microphone is currently off

In a typical, stand alone, configuration the notebook contains only the chairman units, which
appear as MM_C_VIP_CHAIRMAN entries in the notebook list. Other type of notebook entries
can only be added using a DCNNG Control PC.

Error codes returned
MM_E_NOERROR

5.2.5.4 MM_C_NBK_SET
Purpose
Set the complete contents of the Notebook list

Parameter structure for the function
The function requires the following structure as parameter:

typedef struct

{

 WORD wNrOfNbk;

 MM_T_NBK tNbkList[DBSC_MAX_NOTEBOOKLIST];

} MM_T_CCU_NBKLIST;

Where the MM_T_NBK is defined as:

DCN Next Generation Open Interface Release 4.1 en | 77

Bosch Security Systems | 2013 March

typedef struct

{

 WORD wUnitId;

 WORD wMicroType;

} MM_T_NBK;

where:

wNrOfNbk The number of NBK list entries actual present in the tNbkList
array. Only this amount of array elements is transmitted. This
value never exceeds the constant
DBSC_MAX_NOTEBOOKLIST.

tNbkList [] Array holding the NBK list information. Each array element is
defined as a MM_T_NBK_MICRO structure, which is defined
below.

wUnitId Unit Identifier

wMicroType The type of microphone handling for the notebook entry.
The following microphone types are valid for the
notebook entries:

• MM_C_VIP_CHAIRMAN
• MM_C_VIP_KEY
• MM_C_VIP_OPERATOR
• MM_C_VIP_VOICE
• MM_C_VIP_VCHAIR
• MM_C_CHAIRMAN_NO_AC
• MM_C_KEY_NO_AC
• MM_C_OPERATOR_NO_AC
• MM_C_VOICE_NO_AC
• MM_C_VCHAIR_NO_AC
• MM_C_VIP_PTTCHAIRMAN
• MM_C_VIP_PTT
• MM_C_VIP_PTTCHAIRMAN_NO_AC
• MM_C_VIP_PTT_NO_AC

In a typical, stand-alone, configuration the notebook contains only the chairman units, which
appear as MM_C_VIP_CHAIRMAN entries in the notebook list. Other type of notebook entries
can only be added using a DCNNG Control PC.

Response structure from the function
The function has no response parameters.

Error codes returned
MM_E_NOERROR
MM_E_DELETE_NOTEBOOK_FAILED
MM_E_INSERT_NOTEBOOK_FAILED
MM_E_UPDATE_NOTEBOOK_FAILED

Update notifications
MM_C_NBK_SET_ON_PC

Related Functions
MM_C_NBK_GET

5.2.6 MM Request to Speak list functions
This section describes the functions to manipulate the RTS list. The RTS list is a list of
delegates with their unit identifications, which are waiting to get speech-time.

Both the UnitId and the DelegateId are present in the RTS list, because using access-control
with cards and free seating, allows a delegate to leave its unit (taking out his card) and go to
another unit (inserting his card again). During these actions a pending request of that delegate

DCN Next Generation Open Interface Release 4.1 en | 78

Bosch Security Systems | 2013 March

must remain in the RTS list and while the card is not in the system the unit of the delegate is
unknown.

For manipulation of the RTS list a special structure is used to identify a RTS list entry. The
structure is defined as follows:

typedef struct

{

 WORD wUnitId;

 WORD wDelegateId;

} MM_T_RTS;

where:

wUnitId Unit Identifier. Must be unique in the RTS list

wDelegateId Delegate Identifier. May also have the value
DBSC_EMPTY_DELEGATE, when the delegate is unknown.
Delegate identifiers can be set in the system using the remote
functions for System Config chapter 3.

When a RTS list entry is passed with one of the RTS functions the CCU tries to complete the
RTS information passed. This means that when only the ‘wUnitId’ is provided, the CCU will
search the correct delegate and when only the ‘wDelegateId’ is provided; the CCU will search
for the correct unit. Assumed is that not provided elements are filled with the according
DBSC_EMPTY_UNIT or DBSC_EMPTY_DELEGATE value.

When both elements of the structure have empty values or the unit and the delegate
contradict each other, all functions (except MM_C_SHIFT, see section 5.2.6.6) generate an
error (MM_E_UNKNOWN_UNITID_AND_DELID or MM_E_UNITID_DELID_MISMATCH).

5.2.6.1 MM_C_RTS_APPEND
Purpose
Add a delegate/unit combination to the RTS list on the CCU.

Parameter structure for the function
This function requires the structure MM_T_RTS as parameter. This structure is defined in
section 5.2.6.

Response structure from the function
The function has no response parameters.

Error codes returned
MM_E_NOERROR
MM_E_ILLEGAL_MIC_OPER_MODE
MM_E_UNKNOWN_UNITID_AND_DELID
MM_E_UNIT_ALREADY_PRESENT
MM_E_UNIT_NOT_CONNECTED
MM_E_UNITID_DELID_MISMATCH
MM_E_RTS_LIST_FULL
MM_E_INSERT_RTS_LIST_FAILED
MM_E_ILLEGAL_MICRO_TYPE

Update notifications
MM_C_RTS_INSERT_ON_PC
MM_C_RTS_FIRST_ON_PC (if appended delegate becomes the first in the list)

Related functions
MM_C_RTS_REMOVE
MM_C_RTS_CLEAR

5.2.6.2 MM_C_RTS_REMOVE
Purpose
Remove one delegate/unit combination from the RTS list on the CCU.

DCN Next Generation Open Interface Release 4.1 en | 79

Bosch Security Systems | 2013 March

Parameter structure for the function
This functions requires the structure MM_T_RTS as parameter. This structure is defined in
section 5.2.6.

Response structure from the function
The function has no response parameters.

Error codes returned
MM_E_NOERROR
MM_E_ILLEGAL_MIC_OPER_MODE
MM_E_RTS_LIST_EMPTY
MM_E_UNKNOWN_UNITID_AND_DELID
MM_E_UNIT_NOT_PRESENT
MM_E_UNITID_DELID_MISMATCH
MM_E_DELETE_RTS_LIST_FAILED

Update notifications
MM_C_RTS_REMOVE_ON_PC
MM_C_RTS_FIRST_ON_PC (if removed delegate was the first in the list)

Related functions
MM_C_RTS_APPEND
MM_C_RTS_CLEAR

5.2.6.3 MM_C_RTS_CLEAR
Purpose
Clear all pending requests in the system. This includes clearing all entries in the RTS list, and
clearing all entries in the CR list, if present.

Parameter structure for the function
The function has no additional parameters.

Response structure from the function
The function has no response parameters.

Error codes returned
MM_E_NOERROR

Update notifications
MM_C_RTS_CLEAR_ON_PC
MM_C_RTS_CLEAR_COMMENT_ON_PC

Related functions
MM_C_RTS_APPEND
MM_C_RTS_REMOVE

5.2.6.4 MM_C_RTS_GET
Purpose
Retrieve the complete contents of the Request To Speak list as present in the CCU.

Parameter structure for the function
The function has no additional parameters.

Response structure from the function
The function returns the following structure:

typedef struct

{

 WORD wNrOfRts;

 MM_T_RTS tRtsList[DBSC_MAX_DELRTS];

} MM_T_CCU_RTSLIST;

where:

wNrOfRts The number of RTS list entries actual present in the tRtsList
array. Only this amount of array elements are transmitted. This

DCN Next Generation Open Interface Release 4.1 en | 80

Bosch Security Systems | 2013 March

value never exceeds the constant DBSC_MAX_DELRTS.

tRtsList [] Array holding the RTS list information. Each array element is
defined as a MM_T_RTS structure which is defined in section
5.2.6.

Error codes returned
MM_E_NOERROR

Related functions
MM_C_RTS_SET

5.2.6.5 MM_C_RTS_SET
Purpose
Set a new RTS list on the CCU. The current RTS list will be cleared and the provided RTS list
will be made current.

Parameter structure for the function
The function needs as parameter a list of RTS entries as defined as response structure by the
function MM_C_RTS_GET (section 5.2.6.4). The same structure received by the function
MM_C_RTS_GET must be transmitted by this function.

Response structure from the function
The function has no response parameters.

Error codes returned
MM_E_NOERROR
MM_E_ILLEGAL_MIC_OPER_MODE
MM_E_RTS_LIST_TOO_BIG
MM_E_UNKNOWN_UNITID_AND_DELID
MM_E_INSERT_RTS_LIST_FAILED
MM_E_UNITID_DELID_MISMATCH
MM_E_ILLEGAL_MICRO_TYPE

Update notifications
MM_C_RTS_SET_ON_PC

Related functions
MM_C_RTS_GET

5.2.6.6 MM_C_SHIFT
Purpose
Perform a shift function, i.e. promote a delegate from the RTS list to the Speakers list. The
shift differs from other RTS list or Speakers list functions in such a way that the promoted
delegate is always added to the speakers list, whether this list is full or not. Besides, the CS
list and CR list if present are also cleared. This includes the following steps:

1. Clear the CR list and the CS list if the mode is
MM_C_OPERATOR_WITH_COMMENT_LIST

2. Remove the indicated RTS entry from the RTS list. When the indicated entry does not exist
in the RTS list, then the removal is skipped and the entry provided will be used. Note that
the latter also holds when the operation mode is MM_C_DELEGATE_WITH_OVERRIDE
(see also 5.2.2.5).

3. Look if there is an entry free in the SPK list. If not, then a free entry will be created using on
of the following rules:

• If there are SPK entries with their microphone off, then first of these will be
removed.

• When there are only SPK entries with their microphone on, the first unit in the list
will be turned off and removed from the list

4. Create from the RTS entry a SPK entry and add this to the SPK list.

DCN Next Generation Open Interface Release 4.1 en | 81

Bosch Security Systems | 2013 March

Parameter structure for the function
The function requires the structure MM_T_RTS as parameter. This structure is defined in
section 5.2.6.

Normally the provided RTS list entry defines which delegate/unit combination is candidate to
shift to the speakers list.

When the provided RTS is filled with empty values (wUnitId = DBSC_EMPTY_UNIT and
wDelegateId = DBSC_EMPTY_DELEGATE), the first RTS entry present in the RTS list is
used. If there are no RTS entries present or when the operation mode is
MM_C_DELEGATE_WITH_OVERRIDE, nothing happens.

Response structure from the function
The function has no response parameters.

Error codes returned
MM_E_NOERROR
MM_E_UNIT_NOT_CONNECTED
MM_E_ILLEGAL_MIC_OPER_MODE
MM_E_RTS_LIST_EMPTY
MM_E_UNITID_DELID_MISMATCH
MM_E_UNKNOWN_UNITID_AND_DELID

Update notifications
MM_C_CR_CLEAR_ON_PC
MM_C_CS_CLEAR_ON_PC
MM_C_SPK_REMOVE_ON_PC
MM_C_RTS_REMOVE_ON_PC
MM_C_SPK_APPEND_ON_PC
MM_C_RTS_FIRST_ON_PC

5.2.7 MM Comment Request list functions
This section describes the functions to manipulate the CR list. The Comment Request list is a
list of delegates with their unit identifications, which are waiting to get speech-time to respond
to the current speaker. This comment request list is to prevent the delegate from being added
at the end of the normal RTS list.

Comment Requests are identified by the same MM_T_RTS structure as normal RTS entries.

Comment Requests show the same behavior in combination with access-control and cards as
normal RTS entries.

5.2.7.1 MM_C_CR_REMOVE
Purpose
Remove one delegate/unit combination from the CR list on the CCU.

Parameter structure for the function
This functions requires the structure MM_T_RTS as parameter. This structure is defined in
section 5.2.6.

Response structure from the function
The function has no response parameters.

Error codes returned
MM_E_NOERROR
MM_E_UNIT_NOT_PRESENT

Update notifications
MM_C_CR_REMOVE_ON_PC

Related functions
MM_C_CR_GET

DCN Next Generation Open Interface Release 4.1 en | 82

Bosch Security Systems | 2013 March

5.2.7.2 MM_C_CR_GET
Purpose
Retrieve the complete contents of the CR list as present in the CCU.

Parameter structure for the function
The function has no additional parameters.

Response structure from the function
The function returns the following structure:

typedef struct

{

 WORD wNrOfCR;

 MM_T_RTS tCRList[DBSC_MAX_DELCR];

} MM_T_CCU_CRLIST;

where:

wNrOfCR The number of CR list entries actual present in the tCRList
array. This value never exceeds the constant
DBSC_MAX_DELCR.

tCRList [] Array holding the CR list information. Each array element is
defined as a MM_T_RTS structure which is defined in section
5.2.6.

Error codes returned
MM_E_NOERROR

Related functions
MM_C_RTS_CLEAR_COMMENT

5.2.7.3 MM_C_SHIFT_CR
Purpose
Perform a shift function on the CR list, i.e. promote a delegate from the CR list to the CS list.
The shift differs from other Comment Request list or Speakers list functions in such a way that
the promoted delegate is always added to the comment speakers list, whether this list is full or
not. Besides, of all units present in the SPK list the microphones will be turned off. This
includes the following steps:

1. Remove the indicated Comment Request entry from the CR list. When the indicated entry
does not exist in the CR list an error is returned.

2. Turn off the microphones off all entries in the SPK list.

3. Look if there is an entry free in the CS list. If not, then removing the first unit in the CS list
will create a free entry.

4. Create from the Comment Request entry a SPK entry and add this to the CS list.

If however, the delegate was already present in the normal speakers list, then the Comment
Request entry is removed from the CR list and the microphone of the entry in the SPK list is
switched on again.

Note: Currently the operation mode MM_C_OPERATOR_WITH_COMMENT_LIST is only
allowed with a maximum number of active speakers of 1. Also the CS list has currently a
maximum length of 1. This means that when a comment request is shifted, the microphone of
the current speaker in the SPK list is switched off and the current speaker in the CS list, if
present, is removed to make place for the shifted CR entry.

Parameter structure for the function
The function requires the structure MM_T_RTS as parameter. This structure is defined in
section 5.2.6.

Response structure from the function
The function has no response parameters.

DCN Next Generation Open Interface Release 4.1 en | 83

Bosch Security Systems | 2013 March

Error codes returned
MM_E_NOERROR
MM_E_NOT_PRESENT
MM_E_UNIT_NOT_CONNECTED
MM_E_ILLEGAL_MIC_OPER_MODE
MM_E_UNKNOWN_UNITID_AND_DELID

Update notifications
MM_C_CR_REMOVE_ON_PC
MM_C_CS_REMOVE_ON_PC
MM_C_CS_APPEND_ON_PC

5.2.8 MM Speechtime functions
This section describes the functions to manipulate the speech-time.

There is no synchronization between different controllers, e.g. Remote Control and Control-
PC. The last controller, which is used, is the active one.

It is the responsibility of the controller to invoke the different functions when necessary. The
CCU won’t do this for you. The controller should check the speech-time for each individual
speaker and invoke the relevant speech-time function.

5.2.8.1 MM_C_SET_SPEECHTIME_SETTINGS
Purpose
This function stores the speech-time settings in the CCU.

Parameter structure for the function
This function requires the following structure as parameter:

typedef struct

{

 WORD wSpeechTimeLimit;

 BOOLEAN bTimerOn;

 BOOLEAN bHoldOnChairPriority;

 BOOLEAN bShowRemainingTime;

 BOOLEAN bLedFollowMicLed;

} MM_T_SET_SPEECHTIME_SETTINGS;

where:

wSpeechTimeLinit Speech time limit in minutes

bTimerOn TRUE: use the speech timer
FALSE: don’t use the speech timer

bHoldOnChairPriority TRUE: hold timer if one or more Chairman press their Prio
button.
FALSE: don’t hold timer.

bShowRemainingTime TRUE: down counting timer.
FALSE: up counting timer.

bLedFollowMicLed TRUE: the LED ring of the microphone follows the flashing
microphone LED in the last minute of speech.
FALSE: The LED ring does NOT follow the flashing mode of the
microphone LED.

Response structure from the function
This function has no response parameters.

Error codes returned
MM_E_NOERROR

Update notifications
MM_C_TIMER_ON_OFF

DCN Next Generation Open Interface Release 4.1 en | 84

Bosch Security Systems | 2013 March

Related functions
MM_C_LAST_MINUTE_WARNING
MM_C_TIME_FINISHED_WARNING

5.2.8.2 MM_C_LAST_MINUTE_WARNING
Purpose
This function is used to inform a particular unit that it is in his last minute of speaking.

Parameter structure for the function
This function has one parameter:

WORD wUnitId;

where:

wUnitId The unit on which to place the message.

Response structure from the function
This function has no response parameters.

Error codes returned
MM_E_NOERROR
MM_E_UNKNOWN_UNIT

Related functions
MM_C_SET_SPEECHTIME_SETTINGS
MM_C_TIME_FINISHED_WARNING

5.2.8.3 MM_C_TIME_FINISHED_WARNING
Purpose
This function is used to inform a particular unit that its time to speak is run out.

Parameter structure for the function
This function has one parameter:

WORD wUnitId;

where:

wUnitId The unit on which to place the message.

Response structure from the function
This function has no response parameters.

Error codes returned
MM_E_NOERROR
MM_E_UNKNOWN_UNIT

Related functions
MM_C_SET_SPEECHTIME_SETTINGS
MM_C_LAST_MINUTE_WARNING

5.3 Update Notifications

5.3.1 Introduction
This chapter describes the various update notifications sent by the CCU. All the update
notifications of the MM application are listed in this chapter.

5.3.1.1 Update notification item explanation
Each update notification description consists of the following items:

• Purpose
 A global description of the purpose of the notification.

DCN Next Generation Open Interface Release 4.1 en | 85

Bosch Security Systems | 2013 March

• Notify structure with this update
 The information passed with the update notification.

5.3.1.2 Unit/user event relations
As we have mentioned in section 5.1.1, update notifications are not only the results of remote
functions generated by the remote controller, but can also be the results of unit/user events.
To understand these relationships, a unit-event matrix is given in this section. It is assumed
that the remote controller is used with a stand-alone configuration (i.e. no DCNNG Control PC
connected), so only a distinction between chairman and delegate6 is made.

In the unit-event matrix for each event the corresponding update notifications are given,
depending on the operational mode and the type of unit/user. For the Voice Activated mode
there are no update notifications generated at all, so this mode isn’t mentioned in the table
either. The update notifications themselves are described in the remaining sections of this
chapter.

Note that the input events for Microphone and/or Request to Speak are initiated by pressing
the Micro button on a Delegate and/or Chairman unit and the input event for Priority is initiated
by pressing the Priority button on a chairman unit. The input events for Comment Requests
can only occur in the operation mode MM_C_OPERATOR_WITH_COMMENT_LIST. In that
mode the main menu7 and the speakers menu of the delegate units have assigned softkey 3
to the response (i.e. comment) option. This implies that this response option is only available
when the unit has the main menu or the MM menus as current menu. Thus, if a voting round
is running, or a message is being read, the comment option is not available.

6 When speaking of chairman or delegate we really mention the user in the conference hall acting on a chairman
unit and on a delegate unit respectively
7 On units having softkeys but no display the working is equal as if it were units with display and always showing
the main menu.

DCN Next Generation Open Interface Release 4.1 en | 86

Bosch Security Systems | 2013 March

UNIT-EVENT MATRIX

Input event Operational Mode

C: Chairman
D: Delegate

Delegate with Req.List Operator with Req.List Operator with Request an Response
List

Delegate with Override and
Delegate with Push to Talk

C: Microphone On MM_C_MICRO_ON_OFF
MM_C_NR_CHAIR_MICS_ON

MM_C_MICRO_ON_OFF
MM_C_NR_CHAIR_MICS_ON

MM_C_MICRO_ON_OFF
MM_C_NR_CHAIR_MICS_ON

MM_C_MICRO_ON_OFF
MM_C_NR_CHAIR_MICS_ON

C: Microphone Off MM_C_MICRO_ON_OFF
MM_C_NR_CHAIR_MICS_ON

MM_C_MICRO_ON_OFF
MM_C_NR_CHAIR_MICS_ON

MM_C_MICRO_ON_OFF
MM_C_NR_CHAIR_MICS_ON

MM_C_MICRO_ON_OFF
MM_C_NR_CHAIR_MICS_ON

C: Priority On MM_C_MICRO_ON_OFF
MM_C_NR_CHAIR_MICS_ON

MM_C_MICRO_ON_OFF
MM_C_NR_CHAIR_MICS_ON

MM_C_MICRO_ON_OFF
MM_C_NR_CHAIR_MICS_ON

MM_C_MICRO_ON_OFF
MM_C_NR_CHAIR_MICS_ON

C: Priority Off MM_C_MICRO_ON_OFF
MM_C_NR_CHAIR_MICS_ON

MM_C_MICRO_ON_OFF
MM_C_NR_CHAIR_MICS_ON

MM_C_MICRO_ON_OFF
MM_C_NR_CHAIR_MICS_ON

MM_C_MICRO_ON_OFF
MM_C_NR_CHAIR_MICS_ON

D: Request to Speak If the speakers list is not full:
MM_C_SPK_APPEND_ON_PC

else, if the RTS list is not full:
MM_C_RTS_INSERT_ON_PC
and if it is also the first in the RTS
list:
MM_C_RTS_FIRST_ON_PC

if the RTS list is not full:
MM_C_RTS_INSERT_ON_PC
and if it is also the first in the RTS list:
MM_C_RTS_FIRST_ON_PC

if the RTS list is not full:
MM_C_RTS_INSERT_ON_PC
and if it is also the first in the RTS list:
MM_C_RTS_FIRST_ON_PC

If the speakers list is not full:
MM_C_SPK_APPEND_ON_PC

else:
MM_C_SPK_REMOVE_ON_PC
MM_C_SPK_APPEND_ON_PC

D: Cancel Req. to Speak MM_C_RTS_REMOVE_ON_PC
and if it was the first in the RTS list:
MM_C_RTS_FIRST_ON_PC

MM_C_RTS_REMOVE_ON_PC
and if it was the first in the RTS list:
MM_C_RTS_FIRST_ON_PC

MM_C_RTS_REMOVE_ON_PC
and if it was the first in the RTS list:
MM_C_RTS_FIRST_ON_PC

N/A.

D: Microphone Off MM_C_SPK_REMOVE_ON_PC MM_C_MICRO_ON_OFF MM_C_MICRO_ON_OFF MM_C_SPK_REMOVE_ON_PC

D: Comment Request N/A. N/A. if the CR list is not full:
MM_C_CR_ADD_ON_PC

N/A.

D: Cancel Comment
Request

N/A. N/A. MM_C_CR_REMOVE_ON_PC N/A.

C: Cancel all speakers MM_C_RTS_CLEAR_ON_PC
MM_C_SPK_CLEAR_ON_PC

MM_C_RTS_CLEAR_ON_PC
MM_C_SPK_CLEAR_ON_PC

MM_C_RTS_CLEAR_ON_PC
MM_C_CR_CLEAR_ON_PC
MM_C_SPK_CLEAR_ON_PC
MM_C_CS_CLEAR_ON_PC

MM_C_SPK_CLEAR_ON_PC

C: Cancel all requests MM_C_RTS_CLEAR_ON_PC MM_C_RTS_CLEAR_ON_PC MM_C_RTS_CLEAR_ON_PC
MM_C_CR_CLEAR_ON_PC

<None>

DCN Next Generation Open Interface Release 4.1 en | 87

Bosch Security Systems | 2013 March

Note that a delegate does not really turns on its microphone, but he makes a Request to
speak. Depending on the operation mode and the current lists, he is added to the SPK list or
the RTS list. On this Request-to-Speak-event also a remark has to be made if the
unit/delegate is in the Speakerslist but with the microphone off (which is possible with the
function MM_C_SET_MICRO_ON_OFF, see section 5.2.3.1). In that case for all operation
modes a MM_C_SPK_REMOVE_ON_PC update notification is first given for the current unit
after which the update notifications according to the event matrix are generated.

5.3.2 MM General notifications

5.3.2.1 MM_C_SET_MIC_OPER_MODE_ON_PC
Purpose
Notifies the remote controller that the microphone operation-mode has changed on the CCU.

Notify structure with this update
The update comes with a structure as defined in section 5.2.2.5.

5.3.2.2 MM_C_SET_ACTIVE_MICS_ON_PC
Purpose
Notifies the remote controller that the number of active microphones has changed on the
CCU.

Notify structure with this update
The update comes with a structure as defined in section 5.2.2.6.

5.3.2.3 MM_C_SET_SETTINGS_ON_PC
Purpose
Notifies the remote controller that there is a change in the global settings on the CCU.

Notify structure with this update
The update comes with a structure as defined in section 5.2.2.7

5.3.3 MM Speaker list notifications
The Microphone Management speaker list notifications reports the changes in the speakers
list.

5.3.3.1 MM_C_MICRO_ON_OFF
Purpose
Notifies the remote controller that a microphone of a unit is turned on or off. This notification
will be sent when a delegate turns its microphone on or off.

Notify structure with this update
The update comes with the following structure:

typedef struct

{

 WORD wUnitId;

 WORD wMicroId;

 WORD wPrioId;

} MM_T_MICRO_ONOFF_ON_PC;

where:

wUnitId Unit Identifier

wMicroId Passes the status of the microphone. This parameter can be
one of the following values:

• MM_C_PC_MIC_ON
• MM_C_PC_MIC_OFF
• MM_C_PC_MIC_NONE

wPrioId Passes the prio-status of the chairman unit. This priority

DCN Next Generation Open Interface Release 4.1 en | 88

Bosch Security Systems | 2013 March

information indicates to the remote controller that the delegate
units can be muted due to a priority key pressed on this
chairman-unit. Although the microphone is turned on, the
delegate can not yet speak.

This parameter can be one of the following values:
• MM_C_PC_PRIO_ON
• MM_C_PC_PRIO_OFF
• MM_C_PC_PRIO_NONE

The ‘NONE’ values of the parameters ‘wMicroId’ and ‘wPrioId’ indicate that the specific
parameter is not used.

Examples
To illustrate the values of the parameters ‘wMicroId’ and ‘wPrioId’ the following value for these
parameters are returned with the events:

 wMicroId wPrioId

Delegate micro ON MM_C_PC_MIC_ON MM_C_PC_PRIO_NONE
Delegate micro OFF MM_C_PC_MIC_OFF MM_C_PC_PRIO_NONE
Chairman micro ON (no Prio) MM_C_PC_MIC_ON MM_C_PC_PRIO_NONE
Chairman micro OFF (no Prio) MM_C_PC_MIC_OFF MM_C_PC_PRIO_NONE
Chairman prio ON (no micro) MM_C_PC_MIC_ON MM_C_PC_PRIO_ON
Chairman prio OFF (no micro) MM_C_PC_MIC_OFF MM_C_PC_PRIO_OFF
Chairman prio ON (with micro on) MM_C_PC_MIC_NONE MM_C_PC_PRIO_ON
Chairman prio OFF (with micro on) MM_C_PC_MIC_NONE MM_C_PC_PRIO_OFF
Chairman prio ON (with other prio on) MM_C_PC_MIC_ON MM_C_PC_PRIO_ON
Chairman prio OFF (with other prio on) MM_C_PC_MIC_OFF MM_C_PC_PRIO_OFF

5.3.3.2 MM_C_NR_CHAIR_MICS_ON
Purpose
Notifies the remote controller that there are still chairmen, which have pressed their micro or
priority key on the unit.

Note: This notification is used to handle speech-time correctly (controlled by the DCNNG-
control PC). E.g. the delegates’ speech-time must be held when at least one chairman is
speaking.

Notify structure with this update
The update comes with the following structure:

WORD wNrOfChairMicsOn;

where:

wNrOfChairMicsOn The number of chairmen, which are speaking.

5.3.3.3 MM_C_SPK_SET_ON_PC
Purpose
Notifies the remote controller that the CCU has a complete new list of SPK entries.

Notify structure with this update
The update comes with the structure defined in 5.2.3.5.

5.3.3.4 MM_C_SPK_CLEAR_ON_PC
Purpose
Notifies the remote controller that the SPK list is cleared.

Notify structure with this update
The update does not have any additional parameters.

DCN Next Generation Open Interface Release 4.1 en | 89

Bosch Security Systems | 2013 March

5.3.3.5 MM_C_SPK_APPEND_ON_PC
Purpose
Notifies the remote controller that a unit is added to the SPK list.

Notify structure with this update
The update comes with the following structure:

MM_T_SPK tSpkAdd;

where:

tSpkAdd The speaker who is added to the speakers list. The structure
MM_T_SPK is defined in section 5.2.3.2.

5.3.3.6 MM_C_SPK_REMOVE_ON_PC
Purpose
Notifies the remote controller that a unit is removed from the SPK list (including turning off the
microphone).

Notify structure with this update
The update comes with the following structure:

MM_T_SPK tSpkRemove;

where:

tSpkRemove The speaker who is removed from the speakers list. The
structure MM_T_SPK is defined in section 5.2.3.2.

5.3.3.7 MM_C_SPK_INSERT_ON_PC
Purpose
Notifies the remote controller that a speaker is inserted before another speaker.

Notify structure with this update
The update comes with the following structure:

typedef struct

{

 MM_T_SPK tSearchSpk;

 MM_T_SPK tNewSpk;

} MM_T_SPK_INSERT;

where:

tSearchSpk The speaker entry to search for. The new Speaker entry
(‘tNewSpk’) shall be inserted before this Speaker.

tNewSpk The Speaker entry to be added to the list.

5.3.3.8 MM_C_SPK_REPLACE_ON_PC
Purpose
Notifies the remote controller that a speaker is replaced by another speaker.

Notify structure with this update
The update comes along with the following structure:

typedef struct

{

 MM_T_SPK tCurrSpk;

 MM_T_SPK tNewSpk;

} MM_T_SPK_REPLACE;

where:

tCurrSpk The SPK entry to search for. This SPK entry is replaced by the
new value given in the parameter ‘tNewSpk’.

DCN Next Generation Open Interface Release 4.1 en | 90

Bosch Security Systems | 2013 March

tNewSpk The SPK entry holding the new contents.

5.3.4 MM Comment Speaker list notifications
The Microphone Management comment speaker list notifications report the changes in the
comment speakers list.

5.3.4.1 MM_C_CS_CLEAR_ON_PC
Purpose
Notifies the remote controller that the CS list is cleared.

Notify structure with this update
The update does not have any additional parameters.

5.3.4.2 MM_C_CS_ADD_ON_PC
Purpose
Notifies the remote controller that a unit is added to the CS list.

Notify structure with this update
The update comes with the following structure:

MM_T_SPK tCSpkAdd;

where:

tCSpkAdd The speaker who is added to the comment speakers list. The
structure MM_T_SPK is defined in section 5.2.3.2.

5.3.4.3 MM_C_CS_REMOVE_ON_PC
Purpose
Notifies the remote controller that a unit is removed from the SPK list (including turning off the
microphone).

Notify structure with this update
The update comes with the following structure:

MM_T_SPK tCSpkRemove;

where:

tCSpkRemove The speaker who is removed from the comment speakers list.
The structure MM_T_SPK is defined in section 5.2.3.2.

5.3.5 MM Notebook list notifications
The Microphone Management notebook notifications report the remote controller the changes
in the NBK-list.

Note: if the operation mode is set to MM_C_DELEGATE_WITH_VOICE the notebook is not
available (See 5.2.2.5 for operation mode).

5.3.5.1 MM_C_NBK_REMOVE_ON_PC
purpose
Notifies the remote controller that a notebook unit is removed from the NBK list.

Notify structure with this update
The update comes with the following structure:

typedef struct

{

 WORD wUnitId;

 WORD wMicroType;

} MM_T_NBK;

where:

DCN Next Generation Open Interface Release 4.1 en | 91

Bosch Security Systems | 2013 March

wUnitId Unit identifier

wMicroType The type of microphone handling for the notebook entry as
defined in 5.2.5.3

5.3.5.2 MM_C_NBK_SET_ON_PC
purpose
Notifies the remote controller that the CCU has a complete new notebook list. Note that all
chairmen units will be included inside the notebook list.

Notify structure with this update
The update comes with the structure defined as response structure in section 5.2.5.3.

5.3.6 MM Request to Speak list notifications
The Microphone Management request to speak notifications report the remote controller the
changes in the RTS-list.

5.3.6.1 MM_C_RTS_SET_ON_PC
Purpose
Notifies the remote controller that the CCU has a complete new list of request to speak
delegates/units.

Note that this notification implies a change of the first RTS entry in the list.

Notify structure with this update
The update comes with the structure defined in 5.2.6.4.

5.3.6.2 MM_C_RTS_CLEAR_ON_PC
Purpose
Notifies the remote controller that the RTS list is cleared.

Notify structure with this update
The update does not have any additional parameters.

5.3.6.3 MM_C_RTS_REMOVE_ON_PC
Purpose
Notifies the remote controller that a delegate/unit combination is removed from the RTS list.

Notify structure with this update
The update comes along with a MM_T_RTS structure, which indicates the delegate/unit
combination to be removed. The structure MM_T_RTS is defined in section 5.2.6.

5.3.6.4 MM_C_RTS_FIRST_ON_PC
Purpose
Notifies the remote controller which delegate/unit combination is the first in the list. When the
UnitId and DelegateId fields of the structure are filled with DBSC_EMPTY_UNIT and
DBSC_EMPTY_DELEGATE respectively, the first RTS entry becomes invalid. The last results
into a empty RTS list.

Note that this notification invalidates the previous notification about the first RTS list entry.

Notify structure with this update
The update comes with the following structure:

MM_T_RTS tRtsFirst;

where:

tRtsFirst The RTS list entry, which is now at the top of the RTS list.

DCN Next Generation Open Interface Release 4.1 en | 92

Bosch Security Systems | 2013 March

5.3.6.5 MM_C_RTS_INSERT_ON_PC
Purpose
Notifies the remote controller that a delegate/unit combination is inserted in the RTS list before
another RTS entry. This notification is sent for both an insertion between two RTS entries as a
append of a RTS entry to the end of the RTS.

Notify structure with this update
The update comes along with the following structure:

typedef struct

{

 MM_T_RTS tSearchRts;

 MM_T_RTS tNewRts;

} MM_T_RTS_INSERT;

where:

tSearchRts The RTS entry to search for. The new RTS entry (‘tNewRts’)
shall be inserted before this RTS entry. When the elements of
the entry are filled with empty values, then the entry ‘tNewRts’
will be added to the end of the list.

tNewRts The RTS entry to be added to the list.

Note that an append of the new RTS entry will be done when the elements of this parameter
are filled with empty values like:

tSearchRts.wUnitId = DBSC_EMPTY_UNIT;

tSearchRts.wDelegateId = DBSC_EMPTY_DELEGATE;

5.3.6.6 MM_C_RTS_REPLACE_ON_PC
Purpose
Notifies the remote controller that a delegate/unit combination is replaced by a new RTS entry.

Notify structure with this update
The update comes along with the following structure:

typedef struct

{

 MM_T_RTS tCurrRts;

 MM_T_RTS tNewRts;

} MM_T_RTS_REPLACE;

where:

tCurrRts The RTS entry to search for. This RTS entry is replaced by the
new value given in the parameter ‘tNewRts’.

tNewRts The RTS entry holding the new contents.

5.3.7 MM Comment Request list notifications
The Microphone Management Comment Request notifications report the remote controller the
changes in the CR list.

5.3.7.1 MM_C_CR_CLEAR_ON_PC
Purpose
Notifies the remote controller that the CR list is cleared.

Notify structure with this update
The update does not have any additional parameters.

5.3.7.2 MM_C_CR_ADD_ON_PC
Purpose
Notifies the remote controller that a delegate/unit combination is added to the CR list.

DCN Next Generation Open Interface Release 4.1 en | 93

Bosch Security Systems | 2013 March

Notify structure with this update
The update comes along with a MM_T_RTS structure, which indicates the delegate/unit
combination to be removed. The structure MM_T_RTS is defined in section 5.2.6.

5.3.7.3 MM_C_CR_REMOVE_ON_PC
Purpose
Notifies the remote controller that a delegate/unit combination is removed from the CR list.

Notify structure with this update
The update comes along with a MM_T_RTS structure, which indicates the delegate/unit
combination to be removed. The structure MM_T_RTS is defined in section 5.2.6.

5.3.7.4 MM_C_CR_REPLACE_ON_PC
Purpose
Notifies the remote controller that a delegate/unit combination is replaced by a new CR entry.

Notify structure with this update
The update comes along with a MM_T_RTS_REPLACE structure, which indicates the
delegate/unit combination to be removed, and the delegate/unit combination to be added. The
structure MM_T_RTS_REPLACE is defined in section 5.3.6.6.

5.3.8 MM Speechtime notifications
The Microphone Management speechtime notifications report the remote controller the
changes in the Speechtime setting.

5.3.8.1 MM_C_TIMER_ON_OFF
Purpose
Notifies the controller that there is a change in using/not using of the speech timer.

Notify structure with this update
The update does not have any additional parameters.

DCN Next Generation Open Interface Release 4.1 en | 94

Bosch Security Systems | 2013 March

6. CAMERA CONTROL

6.1 Introduction
The Camera Control Remote Interface is part of the DCN Next Generation software that
allows for another controlling entity outside the CCU, not being the DCN Next Generation
Control PC, to use the Camera Control application.

6.1.1 Remote Camera Control Control
Camera Control is the application that allows configuration of Automatic Camera Control.
Typical configuration issues are e.g.: setting camera assignments, setting camera acticity,
setting global settings etc. More details on the complete CC application can be found in the
user manual [USERDOC_CC].

Configuring Camera Control with a remote interface is achieved by means of calling a defined
set of Remote Functions and acting upon a defined set of Update Notifications. The general
concept of Remote Functions and Update Notifications is described in chapter 2chapter 2.
This chapter also describes the protocol and hardware conditions concerning the remote
interface.

Together with this remote interface, there are at the moment two locations in a fully connected
CCU where CC can be influenced. These locations are:

• A remote controller (which can be the control PC) connected using an Ethernet (in case of
MCCU) or RS-232 (in case of SCCU) connection. This remote controller uses Remote
Function calls to configure Camera Control.

• Chairman or delegate units influence Camera Control indirectly: if their microphone is
activated and a camera was assigned to their position, the camera is activated.

To get a fully operational system the remote controller must register itself to the CCU, in order
for it to receive update messages from the CCU.

Remote functions coming from the remote controller can indirectly initiate update notifications
in the CCU. Note that these update notifications are actually generated in connected camera
equipment. Depending on the fact whether or not camera equipment is connected to the CCU,
and on which type of equipment is connected, update notifications may be sent to the CCU.
The CCU then forwards these to the remote controller.

Since the update notifications are only generated indirectly, they will always be received after
the reception of response information of a remote function. The remote controller must wait
for the response of the remote function. After reception of the response appropriate action
should be taken upon the error code returned.

Events coming from a unit (chairman or delegate) are processed and the CCU is updated.
Although there are no events that directly lead to generating and sending notifications, there
are unit events that can indirectly lead to notifications. Again note that it depends on the type
of equipment used and its connection state whether or not the notifications are sent. The
notifications are sent on by the CCU to the registered remote controller.

This document gives the set of Remote Functions and the set of Update Notifications
concerning Camera Control. The relation between Remote Function, sent by the remote
controller, and Update Notifications is given in the description of each separate Remote
Function. The (indirect) relation between unit events and Update Notifications is given in
section 6.3.1.2.

6.2 Remote Functions

6.2.1 Introduction
This chapter describes the remote functions used to configure the Camera Control application
on the CCU.

DCN Next Generation Open Interface Release 4.1 en | 95

Bosch Security Systems | 2013 March

6.2.1.1 Remote function item explanation
Each description consists of the following items:

• Purpose
A global description of the purpose of the function.

• Parameter structure for the function
The input parameters needed to fulfill the function. When the function requires no
parameters, no structure is described here. The type definitions of the basic types used to
build up the input parameter structure are given in chapter 2.

• Response structure from the function
The output information coming from the function called. This information is only valid when
the ‘wError’ field of the received response information equals CC_E_NOERROR.

• Error codes returned
The possible error values returned in the ‘wError’ field of the response information for this
remote function. All different error codes are described in Appendix C Error Codes.

• Update notifications
The update notifications that are generated during the execution of the remote function.
When there are no notifications generated, this part will be omitted. Note that for CC, all
update notifications are generated indirectly and therefore will not always be sent
(depending on the configuration).

• Related functions
The related function in conjunction with the function described. It refers to other remote
functions and to related update notifications. When there are no related functions, this part
will be omitted.

6.2.2 CC General functions

6.2.2.1 CC_C_START_CAMERA_APP

Purpose
This function indicates the CCU that the remote controller wants to communicate with the CC
application inside the CCU. After receiving this function the CCU gives the control of CC to the
remote controller. It is now impossible for another remote controller (e.g. DCNNG Control PC)
to gain control of the application. After this function has been called, the remote controller will
receive update notifications from the CC application (see section 6.3.1.2).

When the execution of this function is omitted, all other remote functions (except
CC_C_GET_GLOBAL_SETTINGS and CC_C_SEND_DATA) will have no effect and will
return an error code (CC_E_NOT_INCONTROL).

Parameter structure for the function
The function has no additional parameters.

Response structure from the function
The function has no response parameters.

Error codes returned
CC_E_NOERROR
CC_E_INCONTROL_OTHER_CHANNEL
CC_E_INCONTROL_THIS_CHANNEL

Related functions
CC_C_STOP_CAMERA_APP

6.2.2.2 CC_C_STOP_CAMERA_APP
Purpose
Indicate the CCU that the remote controller no longer requires to communicate with the CC
application inside the CCU. After receiving this function the CCU takes over the control of CC.

DCN Next Generation Open Interface Release 4.1 en | 96

Bosch Security Systems | 2013 March

The remote controller will no longer receive update notifications.

Parameter structure for the function
The function has no additional parameters.

Response structure from the function
The function has no response parameters.

Error codes returned
CC_E_NOERROR
CC_E_NOT_INCONTROL

Related functions
CC_C_START_CAMERA_APP

6.2.2.3 CC_C_SET_CAMERA_ACTIVITY
Purpose
Indicates the CCU whether or not camera activity must be activated. When activated, the CCU
transmits control commands to the connected camera equipment (see [USERDOC_CC]). If
de-activated, the CCU does not transmit these control commands.

Parameter structure for the function
The function requires the following structure as parameter:

typedef struct

{

 BOOLEAN bCameraActivity;

} CC_T_CAMERA_ACTIVITY;

where:

bCameraActivity TRUE: Camera activity is activated
FALSE: Camera activity is de-activated

Response structure from the function
The function has no response parameters

Error codes returned
CC_E_NOERROR
CC_E_NOT_IN_CONTROL

Update notifications
CC_C_RECEIVE_DATA

6.2.2.4 CC_C_SET_GLOBAL_SETTINGS
Purpose
Sets the global settings of the CC application.

Parameter structure for the function
The function requires the following structure as parameter:

typedef struct

{

 BOOLEAN bCameraOverrideMode;

 BYTE byMovementTime;

 BYTE byNumOfAudienceMon;

 BYTE bySeatTextMode;

 BYTE byCameraControlType;

} CC_T_GLOBAL_SETTINGS;

where:

bCameraOverrideMode TRUE: Camera override mode is activated, meaning a newly
switched on microphone automatically activates the camera

DCN Next Generation Open Interface Release 4.1 en | 97

Bosch Security Systems | 2013 March

covering its position
FALSE: Camera override mode is de-activated, meaning the
camera of a newly switched on microphone is only activated
when the current microphone is switched off

byMovementTime Specifies the camera movement time in unit ‘half-a-second’. To
hide camera movement (as a preposition camera moves from
one position to the next), the overview camera can be activated
and displayed during the movement. This parameter specifies
the period for which the camera movement is hidden. This
parameter can have value 0-254 (i.e. 0-127 seconds). If this
parameter has value 255, the error
CC_E_INVALID_PARAMETER is returned, but only when
wCameraControlType is equal to
CC_C_ALLEGIANT_VIDEO_SWITCHER (in all other cases the
value of byMovementTime is not used).

byNumOfAudienceMon Specifies the number of audience monitors that must show the
images coming from the (active) camera, if applicable. This
number is excluding the operator monitor. This parameter can
have value 1-4. If it has another value, the error
CC_E_INVALID_PARAMETER is returned, but only when
wCameraControlType is equal to
CC_C_ALLEGIANT_VIDEO_SWITCHER (in all other cases the
value of byMovementTime is not used).

bySeatTextMode Defines the seat text mode (if applicable), which defines what
text is shown on the audience monitors and the operator
monitors. Refer to [USERDOC_CC] for details. The mode can
be one of the following:

• CC_C_SCREEN_LINE
The screenline as defined in the Delegate Database
software is shown on one line of 16 characters

• CC_C_SCREEN_LINE_DOUBLE
The screenline as defined in the Delegate Database
software is shown on two lines of 16 characters

• CC_C_SEAT_TEXT
The first line of the seat text configured for the camera (see
CC_C_SET_CAMERA_ASSIGNMENT) is shown on one
line of 16 characters

• CC_C_SEAT_TEXT_DOUBLE
Both lines of the seat text configured for the camera (see
CC_C_SET_CAMERA_ASSIGNMENT) is shown on two
lines of 16 characters

If this parameter has another value, the error
CC_E_INVALID_PARAMETER is returned, but only when
wCameraControlType is equal to
CC_C_ALLEGIANT_VIDEO_SWITCHER (in all other cases the
value of byMovementTime is not used).

byCameraControlType Defines the type of camera control used (i.e. the type of
equipment connected to the CCU that interfaces to the
cameras). This can be one of the following:

• CC_C_NO_CAMERA_CONTROL_TYPE
No equipment is used to control the cameras, i.e. camera
control is not possible

• CC_C_ALLEGIANT_VIDEO_SWITCHER
An Allegiant Video Switcher is used to control the cameras

DCN Next Generation Open Interface Release 4.1 en | 98

Bosch Security Systems | 2013 March

(see [USERDOC_CC] for details)

• CC_C_DIRECT_CAMERA_CONTROL
One AutoDome camera is used to control the camera
positions (the CCU directly interfaces to the camera, see
[USERDOC_CC] for details)

If this parameter has another value, the error
CC_E_INVALID_CONTROL_TYPE is returned

Response structure from the function
The function has no response parameters.

Error codes returned
CC_E_NOERROR
CC_E_NOT_INCONTROL
CC_E_INVALID_CONTROL_TYPE
CC_E_INVALID_PARAMETER

Related functions
CC_C_GET_GLOBAL_SETTINGS
CC_C_SET_CAMERA_ASSIGNMENT

6.2.2.5 CC_C_GET_GLOBAL_SETTINGS
Purpose
This function gets the global settings of the CC application. Note that this function can be
called even when the remote controller is not in control of the CC application
(CC_C_START_CAMERA_APP has not been called).

Parameter structure for the function
The function has no additional parameters.

Response structure from the function
The structure returned by this function is the same structure as sent with the remote function
CC_C_GET_GLOBAL_SETTINGS (see 6.2.2.4).

Error codes returned
CC_E_NOERROR

Related functions
CC_C_SET_GLOBAL_SETTINGS
CC_C_SET_CAMERA_ASSIGNMENT

6.2.2.6 CC_C_SET_CAMERA_ASSIGNMENT
Purpose
This function sets the camera assignment of one or more connected cameras.

Parameter structure for the function
The function requires the following structure as parameter:

typedef struct

{

 WORD wLength;

 CC_T_INDEXED_CAMERA_ASSIGNMENT tIndexedCameraAssignment[

 CC_C_MAX_CAMERA_ASSIGNMENT_CLUSTER];

} CC_T_SET_CAMERA_ASSIGNMENT;

where CC_T_INDEXED_CAMERA_ASSIGNMENT is defined as:

typedef struct

{

 UNITID wUnitId;

 CC_T_CAMERA_ASSIGNMENT tCameraAssignment;

} CC_T_INDEXED_CAMERA_ASSIGNMENT;

DCN Next Generation Open Interface Release 4.1 en | 99

Bosch Security Systems | 2013 March

where CC_T_CAMERA_ASSIGNMENT is defined as:

typedef struct

{

 WORD wCameraNumber;

 BYTE byPreposNumber;

 CHAR szSeatText_1[CC_C_MAX_SEAT_TEXT_LEN];

 CHAR szSeatText_2[CC_C_MAX_SEAT_TEXT_LEN];

} CC_T_CAMERA_ASSIGNMENT;

where:

wLength The number of cameras for which an assignment is set
in this structure. The assignment of these cameras can
be found in tIndexedCameraAssignment[0] up and until
tIndexedCameraAssignment[wLength-1]. This parameter
must be in the range 0 -
CC_C_MAX_CAMERA_ASSIGNMENT_CLUSTER. If it
is outside this range, the error CC_E_INVALID_UNITID
is returned.

 tIndexedCameraAssignment Array holding the camera assignment information. Only
the first wLength items actually hold relevant information,
the rest can be ignored. Each array element is defined
as a CC_T_INDEXED_CAMERA_ASSIGNMENT
structure, which is defined below.

 wUnitId Unit identifier of the unit (delegate or chairman) to which
the camera is assigned. If this identifier is equal to
CC_C_OVERVIEW_ID, the assignment of the overview
camera will be set. If this parameter is larger than or
equal to DBSC_MAX_UNIT, the error
CC_E_INVALID_UNITID is returned.

 tCameraAssignment Camera information and settings belonging to the
camera assignment. The content of this structure is
defined below.

 wCameraNumber Identifier of the camera (as it is known on the connected
equipment). This parameter can have value 1-
DBSC_MAX_CAMERA. If it is outside of this range, the
error CC_E_INVALID_CAMERA_NUMBER is returned.

 byPreposNumber The preposition of the camera. This preposition is
assigned to the unit with unit identifier wUnitId. If this
parameter is equal to 0 or DBSC_EMPTY_PREPOS, the
camera is a fixed camera (i.e. has no prepositions, only
one fixed position). Therefore this parameter can have
value 0-DBSC_MAX_PREPOSITION or
DBSC_EMPTY_PREPOS. If it is outside of this range,
the error CC_E_INVALID_PARAMETER is returned.

 szSeatText_1 First line of the seat text configured for the camera. Note
that this parameter may or may not be used depending
on the global setting bySeatTextMode (see
CC_C_SET_GLOBAL_SETTINGS). This is a NULL
terminated string.

 szSeatText_2 Second line of the seat text configured for the camera.
Note that this parameter may or may not be used
depending on the global setting bySeatTextMode (see
CC_C_SET_GLOBAL_SETTINGS). This is a NULL
terminated string.

Response structure from the function
The function has no response parameters.

DCN Next Generation Open Interface Release 4.1 en | 100

Bosch Security Systems | 2013 March

Error codes returned
CC_E_NOERROR
CC_E_NOT_INCONTROL
CC_E_INVALID_UNITID
CC_E_INVALID_CAMERA_NUMBER
CC_E_INVALID_PARAMETER

Related functions
CC_C_SET_GLOBAL_SETTINGS
CC_C_GET_GLOBAL_SETTINGS

6.2.2.7 CC_C_CLEAR_CAMERA_ASSIGNMENTS
Purpose
This function clears all camera assignments in the CCU.

Parameter structure for the function
The function has no additional parameters.

Response structure from the function
The function has no response parameters..

Error codes returned
CC_E_NOERROR
CC_E_NOT_INCONTROL

6.2.2.8 CC_C_SET_CAMERA_ID
Purpose
This function sets the ID of one or more cameras.

Parameter structure for the function
The function requires the following structure as parameter:

typedef struct

{

 WORD wLength;

 CC_T_INDEXED_CAMERA_ID tIndexedCameraID[

 CC_C_MAX_CAMERA_ID_CLUSTER];

} CC_T_SET_CAMERA_ID;

where CC_T_INDEXED_CAMERA_ID is defined as:

typedef struct

{

 UNITID wCameraNumber;

 CC_T_CAMERA_ID tCameraID;

} CC_T_INDEXED_CAMERA_ID;

where CC_T_CAMERA_ID is defined as:

typedef struct

{

 CHAR szCameraID[CC_C_MAX_CAMERA_ID_LEN];

} CC_T_CAMERA_ASSIGNMENT;

where:

wLength The number of cameras for which the ID is set in this structure.
The details and IDs of these cameras can be found in
tIndexedCameraID[0] up and until tIndexedCameraID[wLength-
1]. This parameter must be in the range 0 -
CC_C_MAX_CAMERA_ID_CLUSTER. If it is outside this range,
the error CC_E_INVALID_CAMERA_NUMBER is returned.

tIndexedCameraID Array holding the camera ID information. Only the first wLength
items actually hold relevant information, the rest can be ignored.
Each array element is defined as a

DCN Next Generation Open Interface Release 4.1 en | 101

Bosch Security Systems | 2013 March

CC_T_INDEXED_CAMERA_ID structure, which is defined
below.

wCameraNumber Identifier of the camera (as it is known on the connected
equipment). This parameter can have value 1-
DBSC_MAX_CAMERA. If this parameter is outside of this
range, the error CC_E_INVALID_CAMERA_NUMBER is
returned.

tCameraID Structure holding the actual camera ID. The content of this
structure is defined below.

szCameraID The camera ID, which is a NULL terminated string.

Response structure from the function
The function has no response parameters.

Error codes returned
CC_E_NOERROR
CC_E_NOT_INCONTROL
CC_E_INVALID_CAMERA_NUMBER

6.2.2.9 CC_C_CLEAR_CAMERA_IDS
Purpose
This function clears all camera IDs in the CCU.

Parameter structure for the function
The function has no additional parameters.

Response structure from the function
The function has no response parameters..

Error codes returned
CC_E_NOERROR
CC_E_NOT_INCONTROL

6.2.2.10 CC_C_SEND_DATA
Purpose
This function can be used to send data to the camera equipment connected to the CCU
(Allegiant Video Switcher or an AutoDome Camera). If sending the data fails, error
CC_E_INVALID_PORT_OUT is returned. Note that this function can be called even when the
remote controller is not in control of the CC application (CC_C_START_CAMERA_APP has
not been called).

Parameter structure for the function
The function requires the following structure as parameter:

typedef struct

{

 WORD wLength;

 BYTE byData[CC_C_MAX_DATA_LEN];

} CC_T_DATA_FRAME;

where:

wLength Defines the size of the data sent, i.e. the data is found in
byData[0] up and until byData[wLength-1]. This parameter must
be in the range 0 - CC_C_MAX_DATA_LEN.

byData Array holding the actual data. Only the first wLength items
actually hold relevant information, the rest can be ignored.

Response structure from the function
The function has no response parameters.

DCN Next Generation Open Interface Release 4.1 en | 102

Bosch Security Systems | 2013 March

Error codes returned
CC_E_NOERROR
CC_E_INVALID_PORT_OUT

Update notifications
CC_C_RECEIVE_DATA

6.3 Update Notifications

6.3.1 Introduction
This chapter describes the various update notifications sent by the CCU. All the update
notifications of the CC application are listed in this chapter.

6.3.1.1 Update notification item explanation
Each update notification description consists of the following items:

• Purpose
A global description of the purpose of the notification.

• Notify structure with this update
The information passed with the update notification.

DCN Next Generation Open Interface Release 4.1 en | 103

Bosch Security Systems | 2013 March

6.3.1.2 Unit/user event relations
As mentioned in section 5.1.1, update notifications are not only the result of remote functions
generated by the remote controller, but can also be the result of (interpreter) unit/user events.
It was also mentioned in section 5.1.1 that the relation between the unit/user events and the
update notifications is indirect (i.e. asynchronous).

This section gives information about the events coming from a unit/user and the possible
processing done for the events. In the table below an overview is made about the events and
the possible actions performed. Note that it depends on the type of equipment used and its
connection state whether or not the notifications are sent.

Event CC_C_RECEIVE_DATA
Microphone on (delegate/chairman) X

Microphone off (delegate/chairman) X

6.3.2 CC General notifications

6.3.2.1 CC_C_RECEIVE_DATA
Purpose
This notification sends data received from the connected equipment to the remote controller.

Notify structure with this update
The update comes with the same structure as described in 6.2.2.10 (CC_T_DATA_FRAME).

DCN Next Generation Open Interface Release 4.1 en | 104

Bosch Security Systems | 2013 March

7. SIMULTANEOUS INTERPRETATION

7.1 Introduction
The Simultaneous Interpretation Remote Interface is part of the DCN Next Generation
software that allows for another controlling entity outside the CCU, not being the DCN Next
Generation Control PC, to use the Simultaneous Interpretation application.

7.1.1 Remote Simultaneous Interpretation Control
Simultaneous Interpretation is the application that allows preparation and monitoring over the
functionality of the interpreter desks. Typical control issues are e.g.: setting a desk
configuration, changing the interlock mode, changing the channel languages etc. More details
on the complete IN application can be found in the user manual [USERDOC_IN].

Controlling Simultaneous Interpretation with a remote interface is achieved by means of
calling a defined set of Remote Functions and acting upon a defined set of Update
Notifications. The general concept of Remote Functions and Update Notifications is described
in chapter 2. This chapter also describes the protocol and hardware conditions concerning the
remote interface.

Together with this remote interface, there are at the moment two locations in a fully connected
CCU where IN can be influenced. These locations are:

• A remote controller (which can be the control PC) connected using an Ethernet (in case of
MCCU) or RS-232 (in case of SCCU) connection. This remote controller uses Remote
Function calls to control Simultaneous Interpretation.

• The actual interpreter units that handle their interpreter desk control keys.

To get a fully operational system the remote controller must register itself to the CCU, in order
for it to receive update messages from the CCU.

Remote functions coming from the remote controller can initiate an update in the CCU. During
the update, notifications are generated and sent to the remote controller.

During the processing of remote functions on the CCU, the update messages are created and
transmitted. This implies that the response information of a remote function can be received
after the reception of an update notification. The remote controller must wait for the response
of the remote function. After reception of the response appropriate action should be taken
upon the error code returned. The notifications received during the wait for the response may
be processed directly. See chapter 2 for details on this mechanism.

Events coming from a unit (interpreter desk) are processed and the CCU is updated. Although
there are no events that directly lead to generating and sending notifications, there are unit
events that indirectly lead to notifications. These notifications are sent to the registered remote
controller.

This document gives the set of Remote Functions and the set of Update Notifications
concerning Simultaneous Interpretation. The relation between Remote Function, sent by the
remote controller, and Update Notifications is given in the description of each separate
Remote Function. The (indirect) relation between unit events and Update Notifications is given
in section 6.3.1.2.

7.2 Remote Functions

7.2.1 Introduction
This chapter describes the remote functions used to control the Simultaneous Interpretation
application on the CCU.

7.2.2 Remote function item explanation
Each description consists of the following items:

DCN Next Generation Open Interface Release 4.1 en | 105

Bosch Security Systems | 2013 March

• Purpose
A global description of the purpose of the function.

• Parameter structure for the function
The input parameters needed to fulfill the function. When the function requires no
parameters, no structure is described here. The type definitions of the basic types used to
build up the input parameter structure are given in chapter 2.

• Response structure from the function
The output information coming from the function called. This information is only valid when
the ‘wError’ field of the received response information equals IN_E_NOERROR.

• Error codes returned
The possible error values returned in the ‘wError’ field of the response information for this
remote function. All different error codes are described in Appendix C Error Codes.

• Update notifications
The update notifications that are generated during the execution of the remote function.
When there are no notifications generated, this part will be omitted.

• Related functions
The related function in conjunction with the function described. It refers to other remote
functions and to related update notifications. When there are no related functions, this part
will be omitted.

7.2.3 IN General functions

7.2.3.1 IN_C_SIGNAL_CCU

Remarks
This function is exported in the IN remote interface for compatible reasons only!
Use IN_C_START_IN_APP / IN_C_STOP_IN_APP instead. This function will not be
supported from version 3.0.

Purpose
Function to update the controller state on the CCU. Depending on the state the database
system setting StandAloneIN is updated, a timer for controller update messages is inserted or
deleted, a configuration notification and/or a states notification is forced. When a timer is
inserted, a states notification is sent every time this timer times out.

Parameter structure for the function
The function requires the following structure as parameter:

struct

{

 WORD wDummy;

 WORD wPCActive;

}

where:

wDummy Dummy value, not used in the function.

wPCActive The controller state. This controller state is a bit-shifted version
(8-bit left shift) of one of the states IN_C_STANDALONE or
IN_C_WITHPC. In case of IN_C_STANDALONE, the database
system setting StandAloneIN is set to FALSE and the timer for
controller update messages is deleted. In case of
IN_C_WITHPC StandAloneIN is set to TRUE, an update timer
is inserted and both a configuration and states notification is
sent.

DCN Next Generation Open Interface Release 4.1 en | 106

Bosch Security Systems | 2013 March

Response structure from the function
The function returns the following structure:

WORD wNrOfInstances

where:

wNrOfInstances The value of the update use count for the IN application at the
end of the function handling. It contains the number of times a
remote controller (other than the remote PC) has connected
over the same communication medium. Therefore the first time
the IN_C_START_MON_IN function is called, it contains the
value 1.

Error codes returned
IN_E_NOERROR

Update notifications
IN_C_CHAN_STATUS
IN_C_CCU_CONFIG

7.2.3.2 IN_C_START_IN_APP
Purpose
Indicates the CCU that the remote controller wants to communicate with the IN application
inside the CCU. After receiving this function the CCU gives the control of IN to the remote
controller. It is now impossible for another remote controller (e.g. DCNNG Control PC) to gain
control of the application. After this function has been called, the remote controller will receive
update notifications from the IN application (see section 6.3.1.2).

When the execution of this function is omitted, all other remote functions (except the other
start and stop functions) will have no effect and will return an error code
(IN_E_APP_NOT_STARTED).

Parameter structure for the function
The function has no additional parameters.

Response structure from the function
The function returns the following structure

WORD wNrOfInstances;

where:

wNrOfInstances The value of the update use count for the IN application at the
end of the function handling. It contains the number of times a
remote controller has connected over the same communication
medium. E.g. the first time the IN_C_START_IN_APP function
is called, it contains the value 1. Note that calling
IN_C_START_MON_IN will also increase this update use
count.

Error codes returned
IN_E_NOERROR
IN_E_INCONTROL_OTHER_CHANNEL
IN_E_INCONTROL_THIS_CHANNEL

DCN Next Generation Open Interface Release 4.1 en | 107

Bosch Security Systems | 2013 March

Update notifications
IN_C_CCU_CONFIG
IN_C_CHAN_STATUS
IN_C_LANGUAGE_LIST
IN_C_FLASHING_MIC_ON
IN_C_SPEAKSLOWLY_SIGN
IN_C_HELP_SIGN

Related functions
IN_C_STOP_IN_APP

7.2.3.3 IN_C_STOP_IN_APP
Purpose
Indicate the CCU that the remote controller no longer requires to communicate with the IN
application inside the CCU. After receiving this function the CCU takes over the control of IN.
The remote controller will no longer receive update notifications.

Parameter structure for the function
The function has no additional parameters.

Response structure from the function
The function returns the following structure:

WORD wNrOfInstances;

where:

wNrOfInstances The value of the update use count for the IN application at the
end of the function handling. It contains the number of times a
remote controller is connected over the same communication
medium. E.g. when there is only one connection registered for
the IN application prior to calling the IN_C_STOP IN_APP
function, the value of wNrOfInstances will be 0 when the
function returns. Note that calling IN_C_STOP_MON_IN will
also decrease this update use count.

Error codes returned
IN_E_NOERROR
IN_E_NOT_IN_CONTROL

Related functions
IN_C_START_IN_APP

7.2.3.4 IN_C_START_MON_IN
Purpose
Function to start the monitoring behavior of the Simultaneous Interpretation application. It is
not allowed/possible to control settings of Simultaneous Interpretation.

Parameter structure for the function
The function has no additional parameters.

Response structure from the function
The function returns the following structure:

WORD wNrOfInstances;

where:

wNrOfInstances The value of the update use count for the IN application at the
end of the function handling. It contains the number of times a
remote controller has connected over the same communication
medium. E.g. the first time the IN_C_START_MON_IN function
is called, it contains the value 1. Note that calling

DCN Next Generation Open Interface Release 4.1 en | 108

Bosch Security Systems | 2013 March

IN_C_START_IN_APP also increases this update use count.

Error codes returned
IN_E_NOERROR

Update notifications
IN_C_CCU_CONFIG
IN_C_CHAN_STATUS
IN_C_LANGUAGE_LIST
IN_C_FLASHING_MIC_ON
IN_C_SPEAKSLOWLY_SIGN
IN_C_HELP_SIGN

Related functions
IN_C_STOP_MON_IN

7.2.3.5 IN_C_STOP_MON_IN
Purpose
Function to stop monitoring the behavior of the Simultaneous Interpretation application.

Parameter structure for the function
The function has no additional parameters.

Response structure from the function
The function returns the following structure:

WORD wNrOfInstances;

where:

wNrOfInstances The value of the update use count for the IN application at the
end of the function handling. It contains the number of times a
remote controller is connected over the same communication
medium. E.g. when there is only one connection registered for
the IN application prior to calling the IN_C_STOP_MON_IN
function, the value of wNrOfInstances will be 0 when the
function returns. Note that calling IN_C_STOP_IN_APP will also
decrease this update use count.

Error codes returned
IN_E_NOERROR

Related functions
IN_C_START_MON_IN

7.2.3.6 IN_C_DESK_UPDATE
Purpose
This function updates an interpreter desk configuration in the CCU with a new configuration
from the remote controller. It only changes data for one desk. If a microphone is on, it will be
turned off first. The desk gets a download and will be brought up in its default state. The
default B out channel is the lowest channel enabled. If no interpreter with the specified
booth/desk combination can be found an error is returned. An interpreter unit that is being
installed when this function is called will leave its installation menu.

Parameter structure for the function
The function requires the following structure as parameter:

struct

{

 WORD wBoothNr;

 WORD wDeskNr;

 WORD wAChannel;

DCN Next Generation Open Interface Release 4.1 en | 109

Bosch Security Systems | 2013 March

 DWORD dwfBChannelSet;

};

where:

wBoothNr Booth number of the interpreter desk. Range: 1..31

wDeskNr Desk number of the interpreter desk. Range: 1..6

wAChannel The A out channel of the interpreter desk. Range: 1..current
number of IN channels (which is maximally
DBSC_MAX_INTERPRT_CHANNELS)

dwfBChannelSet Double word (32 bits), of which the bits indicate which channels
are enabled for the B out channel of the interpreter desk. The
least significant bit stands for channel 1. If a bit is equal to 1, the
channel it stands for is enabled for the B out channel.

Response structure from the function
The function has no response parameters.

Error codes returned
IN_E_NOERROR
IN_E_WRONG_PARAMETER
IN_E_APP_NOT_STARTED
IN_E_UNKNOWN_INTSEAT

7.2.3.7 IN_C_BOOTH_UPDATE
Purpose
This function updates an interpreter booth configuration in the CCU with a new configuration
from the remote controller. It only changes the auto relay flag for one booth. All microphones
in the booth will be turned off first. The auto relay flag is then set. No download takes place. If
the booth cannot be found an error is returned. An interpreter unit that is being installed when
this function is called will leave its installation menu.

Parameter structure for the function
The function requires the following structure as parameter:

struct

{

 WORD wBoothNr;

 WORD wAutoRelay;

};

where:

wBoothNr Booth number of the booth that needs to be updated. Range:
1..31

wAutoRelay Auto relay flag. If the high byte part of this parameter is not
equal to 0 (e.g. the parameter has a hexadecimal value
0x0100), the booth will be an auto relay booth. If the high byte
part of this parameter is equal to 0 (e.g. the parameter has a
hexadecimal value 0x0000), the booth will not be an autorelay
booth.

Response structure from the function
The function has no response parameters.

Error codes returned
IN_E_NOERROR
IN_E_WRONG_PARAMETER
IN_E_APP_NOT_STARTED
IN_E_UNKNOWN_BOOTH_NR

DCN Next Generation Open Interface Release 4.1 en | 110

Bosch Security Systems | 2013 March

7.2.3.8 IN_C_UPDATE_LOCK
Purpose
This function changes both lock modes and the engaged Led indication. The database is
updated, all microphones are turned off, the unit in install mode will leave its installation menu
and all configuration data is downloaded, except for the language list. If the slave configuration
does not allow one of the interlock modes an error is returned.

Parameter structure for the function
The function requires the following structure as parameter:

struct

{

 BYTE byWithin;

 BYTE byBetween;

 BOOLEAN bNormalEngaged;

};

where:

byWithin Interlock mode within a booth, which can be one of the following
values:

• IN_C_NONEMODE
• IN_C_OVERRIDE
• IN_C_INTERLOCK

byBetween Interlock mode between booths, see byWithin for the possible
values. Next to these the following interlock mode is also
possible:

• IN_C_OVERRIDE_ON_B_ONLY

bNormalEngaged Engaged Led indication:
TRUE stands for normal mode. If the microphone of an
interpreter desk in a booth is switched on (first desk), the
engaged LED (of the output channel of the active desk) will light
up on all other interpreter desks of that booth.
FALSE stands for alternative mode. In this case, the engaged
LED of the other interpreter desk in the booth will not light up. It
will be flashing when another interpreter desk in the booth also
activates its microphone, but this happens in normal mode too.

Response structure from the function
The function has no response parameters.

Error codes returned
IN_E_NOERROR
IN_E_INTERLOCK_NOT_ALLOWED
IN_E_WRONG_PARAMETER
IN_E_APP_NOT_STARTED

7.2.3.9 IN_C_LOAD_INT_DB
Purpose
This function changes the whole installation of the IN application. If the slave configuration
does not allow the installation data, nothing happens and an error is returned. If the installation
data is allowed, it changes the autorelay booths, the interlock modes, the channel languages
and the number of channels and per interpreter desk the incoming and outgoing channels and
which B out channels are enabled. The whole application is stopped and restarted in a default
situation after all data is updated and downloaded to the desk. If the passed parameters
exactly correspond to the current situation in the CCU, nothing happens and
IN_E_NOERROR is returned.

Parameter structure for the function
The function requires the following structure as parameter:

DCN Next Generation Open Interface Release 4.1 en | 111

Bosch Security Systems | 2013 March

typedef struct

{

 DWORD dwfAutoSet;

 BYTE byBetweenLock;

 BYTE byWithinLock;

 BYTE byMaxChans;

 BYTE byChannels[DBSC_MAX_INTERPRT_CHANNEL];

 IN_T_DESKCONFIG tDeskConf[DBSC_MAX_INTBOOTH][DBSC_MAX_DESK_PER_BOOTH];

 BOOLEAN bNormalEngaged;

} IN_T_DB_DATA;

where the IN_T_DESKCONFIG is defined as:

typedef struct

{

 BOOLEAN bInstalled;

 UNITID wUnitId;

 BYTE byIncoming;

 BYTE byOutgoing;

 CHAR cOutSelect;

 DWORD dwfBChannelSet;

} IN_T_DESKCONFIG;

in which a UNITID is defined as:

typedef WORD UNITID;

where:

dwfAutoSet Autorelay flag. The bits of this DWORD indicate which booths
are autorelay booths. The least significant bit stands for booth 1.
If a bit is equal to 1, the corresponding booth is an autorelay
booth.

byBetweenLock Interlock mode between booths, which can be one of the
following values:

• IN_C_NONEMODE
• IN_C_OVERRIDE
• IN_C_INTERLOCK
• IN_C_OVERRIDE_ON_B_ONLY

byWithinLock Interlock mode within a booth, see byBetweenLock for the
possible values, except for the IN_C_OVERRIDE_ON_B_ONLY
interlock mode.

byMaxChans The number of assigned channels. Range:
1..DBSC_MAX_INTERPRT_CHANNEL.

byChannels[] Array with language per channel. Only the first byMaxChans
values of this array are used.

bNormalEngaged Engaged Led indication:
TRUE stands for normal mode. If the microphone of an
interpreter desk in a booth is switched on (first desk), the
engaged LED (of the output channel of the active desk) will light
up on all other interpreter desks of that booth.
FALSE stands for alternative mode. In this case, the engaged
LED of the other interpreter desk in the booth will not light up. It
will be flashing when another interpreter desk in the booth also
activates its microphone, but this happens in normal mode too.

tDeskConf[][] Matrix holding the desk configuration. Each matrix element is
defined as an IN_T_DESKCONFIG structure that is defined
below. The position in the matrix defines the desk and booth
number of the unit (interpreter desk). Adding the value 1 to the
indexes of the matrix retrieves the booth and desk number, e.g.

DCN Next Generation Open Interface Release 4.1 en | 112

Bosch Security Systems | 2013 March

tDeskConf[2][3] hold the data of the interpreter desk located in
booth 3 with desk number 4.

bInstalled TRUE if the interpreter desk is installed
FALSE if the interpreter desk is not installed. In this
case all other parameters of this IN_T_DESKCONFIG
structure are discarded.

wUnitId Unit Identifier. Valid values are 1..231 and 233..242
(note that the unit identifier must be unique for every
active unit, i.e. not only for interpreter desks). If there is
no unit assigned to the desk and booth number this
identifier belongs to (see tDeskConf explanation), it
must have the value DCNC_UNASSIGNED_UNIT. The
mapping of unit identifiers to booth and desk numbers
must be the same as the mapping received in the last
IN_C_CHAN_STATUS notification (see 6.3.2.1 -
tIntMics). If this is not the case, the error
IN_E_INCORRECT_DESK_CONFIG will be returned.

byIncoming The incoming channel of the interpreter desk. This
value is ignored, floor is set as incoming channel of the
interpreter desk (to start in a default situation).

byOutgoing The A out channel of the interpreter desk. Range:
1..byMaxChans

cOutSelect ‘A’ if the A out channel of the interpreter desk is active
’B’ if the B out channel of the interpreter desk is active.
Note that this parameter is case sensitive, i.e. if it is ‘a’
or ‘b’ the error code IN_E_WRONG_PARAMETER will
be returned.

dwfBChannelSet Double word (32 bits), of which the bits indicate which
channels are enabled for the B out channel of the
interpreter desk. The least significant bit stands for
channel 1. If a bit is equal to 1, the channel it stands for
is enabled for the B out channel.

Response structure from the function
The function has no response parameters.

Error codes returned
IN_E_NOERROR
IN_E_INTERLOCK_NOT_ALLOWED
IN_E_WRONG_PARAMETER
IN_E_APP_NOT_STARTED
IN_E_INCORRECT_DESK_CONFIG

Related functions
IN_C_DESK_UPDATE
IN_C_BOOTH_UPDATE
IN_C_UPDATE_LCK

7.2.3.10 IN_C_CHANNEL_UPDATE
Purpose
This function changes the channel languages and the number of channels. The whole
application is stopped and restarted in a default situation after the channel data is updated and
downloaded to the desk.

Parameter structure for the function
The function requires the following structure as parameter:

IN_T_CHANNELLANG tChannelLang;

DCN Next Generation Open Interface Release 4.1 en | 113

Bosch Security Systems | 2013 March

where IN_T_CHANNELLANG is defined as:

typedef BYTE IN_T_CHANNELLANG[DBSC_MAX_INTERPRT_CHANNELS];

where:

tChannelLang Array holding the channel languages. This array can hold up to
DBSC_MAX_INTERPRT_CHANNELS channel languages. If
the array holds less channel languages, this is marked by an
array value equal to the constant IN_C_NOMORE_CHANNELS.
All values in the array after this special value are ignored (this
way the number of channels is determined). The range of the
channel languages is 1..DBSC_MAX_LANGNAME. Also note
that the range of the number of channels is
1..DBSC_MAX_INTERPRT_CHANNELS. Therefore if the
constant IN_C_NOMORE_CHANNELS is found in
tChannelLang[0] (implying the number of channels is equal to
0), the error code IN_E_WRONG_PARAMETER will be
returned.

Response structure from the function
The function has no response parameters.

Error codes returned
IN_E_NOERROR
IN_E_WRONG_PARAMETER
IN_E_APP_NOT_STARTED

7.2.3.11 IN_C_DOWNLOAD_LANGLIST
Purpose
This function sends a new language list from the remote controller to the CCU. If it is not the
standard English or French list the database is updated. If the language list number changes
or if the new one is not the standard English or French list all desks are downloaded for
configuration and language list data. All microphones are turned off in that case and the units
are brought back in a default state.

Parameter structure for the function
The function requires the following structure as parameter:

typedef struct

{

 WORD wVersionOfLangList;

 struct IN_T_LANGLIST tLangList[DBSC_MAX_LANGNAME];

} IN_T_RF_LANGLIST;

where the struct IN_T_LANGLIST is defined as:

struct IN_T_LANGLIST

{

 WORD wAudioLangId;

 CHAR szLangName[DBSC_NCHAR_LANGNAME];

 CHAR szLangAbbr[DBSC_NCHAR_LANGABBR];

};

where:

wVersionOfLangList Version of the language list. This can be one of the following
constants:

• IN_C_ENG_LANG_LIST_ID (standard English list)
• IN_C_FR_LANG_LIST_ID (standard French list)
• IN_C_ORG_LANG_LIST_ID8 (original language list)
• IN_C_CUS_LANG_LIST_1_ID (custom language list 1)

8 Is the default value when wVersionOfLangList argument is incorrect.

DCN Next Generation Open Interface Release 4.1 en | 114

Bosch Security Systems | 2013 March

• IN_C_CUS_LANG_LIST_2_ID (custom language list 2)
• IN_C_CUS_LANG_LIST_3_ID (custom language list 3)

tLangList Array holding the actual language list information. Each array
element is defined as an IN_T_LANGLIST structure that is
defined below. This array is only read and stored when
wVersionOfLangList is not equal to IN_C_ENG_LANG_LIST or
IN_C_FR_LANG_LIST_ID, else it is discarded.

wAudioLangId The Identifier of the audio language. This parameter is
ignored, the actual identifier is derived from the array
index of tLangList by adding 1 to this index. E.g. the
identifier of the audio language in tLangList[2] is 3.

szLangName Name of the audio language. This must be a null
terminated string (i.e. maximum length of the name is
(DBSC_NCHAR_LANGNAME – 1) characters followed
by the ‘\0’ character).

szLangAbbr Abbreviation of the audio language. This must be a null
terminated string (i.e. maximum length is
(DBSC_NCHAR_LANGABBR – 1) characters followed
by the ‘\0’ character).

Response structure from the function
The function has no response parameters.

Error codes returned
IN_E_NOERROR
 IN_E_APP_NOT_STARTED

Update notifications
IN_C_LANGUAGE_LIST

7.2.3.12 IN_C_SET_FLASH_MIC_ON
Purpose
This function is used to configure the interpreter desks concerning the microphone button ring
when engaged. The microphone button ring can be set to be flashing or non-flashing (stays
on) when engaged.

Parameter structure for the function
The function requires the following structure as parameter:

BOOLEAN bFlashingWhenEngaged;

where:

bFlashingWhenEngaged TRUE if the microphone button ring must be flashing when
engaged
FALSE if the microphone button ring must not be flashing
when engaged.

Response structure from the function
The function has no response parameters.

Error codes returned
IN_E_NOERROR
IN_E_APP_NOT_STARTED

Update notifications
IN_C_FLASHING_MIC_ON

DCN Next Generation Open Interface Release 4.1 en | 115

Bosch Security Systems | 2013 March

7.2.3.13 IN_C_SET_FLOOR_DIST
Purpose
This function is used to configure the interpreter desks concerning distribution of the floor
signal on the outgoing channel in case no interpretation is performed. There are two
possibilities: either the floor signal is distributed, or no signal is distributed.

Parameter structure for the function
The function requires the following structure as parameter:

BOOLEAN bFloorDistribution;

where:

bFloorDistribution TRUE if the floor signal must be distributed on the outgoing
channel when no interpretation is performed
FALSE if no signal must be distributed on the outgoing
channel when no interpretation is performed.

Response structure from the function
The function has no response parameters.

Error codes returned
IN_E_NOERROR
IN_E_APP_NOT_STARTED

Update notifications
IN_C_FLOOR_DISTRIBUTION

Related functions
IN_C_GET_FLOOR_DIST

7.2.3.14 IN_C_GET_FLOOR_DIST

Purpose
This function is used to retrieve the current setting concerning distribution of the floor signal on
the outgoing channel in case no interpretation is performed. There are two possibilities: either
the floor signal is distributed, or no signal is distributed.

Parameter structure for the function
The function has no additional parameters.

Response structure from the function
The function returns the following structure:

BOOLEAN bFloorDistribution;

where:

bFloorDistribution TRUE if the floor signal is distributed on the outgoing channel
when no interpretation is performed
FALSE if no signal is distributed on the outgoing channel when
no interpretation is performed.

Error codes returned
IN_E_NOERROR
IN_E_APP_NOT_STARTED

Related functions
IN_C_SET_FLOOR_DIST

7.2.3.15 IN_C_SET_SPEAKSLOWLY_SIGN
Purpose
This function is used to configure the interpreter desks concerning the enabling of speak
slowly signaling. There are two possibilities: either the function is disabled or enabled.

DCN Next Generation Open Interface Release 4.1 en | 116

Bosch Security Systems | 2013 March

Parameter structure for the function
The function requires the following structure as parameter:

BOOLEAN bSpeakSlowlySign;

where:

bSpeakSlowlySign TRUE if speak slowly signaling must be enabled
FALSE if speak slowly signaling must be disabled

Response structure from the function
The function has no response parameters.

Error codes returned
IN_E_NOERROR
IN_E_APP_NOT_STARTED

Update notifications
IN_C_SPEAKSLOWLY_SIGN

Related functions
IN_C_GET_SPEAKSLOWLY_SIGN

7.2.3.16 IN_C_GET_SPEAKSLOWLY_SIGN
Purpose
This function is used to retrieve the interpreter desks configuration concerning the enabling of
speak slowly signaling. There are two possibilities: either the function is disabled or enabled.

Parameter structure for the function
The function has no additional parameters.

Response structure from the function
The function returns the following structure:

BOOLEAN bSpeakSlowlySign;

where:

bSpeakSlowlySign TRUE if speak slowly signaling is enabled.
FALSE if speak slowly signaling is disabled.

Error codes returned
IN_E_NOERROR
IN_E_APP_NOT_STARTED

Related functions
IN_C_SET_SPEAKSLOWLY_SIGN

7.2.3.17 IN_C_SET_HELP_SIGN
Purpose
This function is used to configure the interpreter desks concerning the enabling of help
signaling. There are two possibilities: either the function is disabled or enabled.

Parameter structure for the function
The function requires the following structure as parameter:

BOOLEAN bHelpSign;

where:

bHelpSign TRUE if help signaling must be enabled
FALSE if help signaling must be disabled

Response structure from the function
The function has no response parameters.

Error codes returned
IN_E_NOERROR
IN_E_APP_NOT_STARTED

DCN Next Generation Open Interface Release 4.1 en | 117

Bosch Security Systems | 2013 March

Update notifications
IN_C_HELP_SIGN

Related functions
IN_C_GET_HELP_SIGN

7.2.3.18 IN_C_GET_HELP_SIGN
Purpose
This function is used to retrieve the interpreter desks configuration concerning the enabling of
help signaling. There are two possibilities: either the function is disabled or enabled.

Parameter structure for the function
The function has no additional parameters.

Response structure from the function
The function returns the following structure:

BOOLEAN bHelpSign;

where:

bHelpSign TRUE if help signaling is enabled.
FALSE if help signaling is disabled.

Error codes returned
IN_E_NOERROR
IN_E_APP_NOT_STARTED

Related functions
IN_C_SET_HELP_SIGN

7.2.3.19 IN_C_ASSIGN_UNIT
Purpose
This function is used to assign unit(s) to the given booth and desk numbers.

Parameter structure for the function
The function requires the following structure as parameter:

typedef struct

{

 WORD wNrOfUnits;

 IN_T_UNIT_ASSIGN tUnitAssignList[DBSC_MAX_INTSEAT];

} IN_T_UNIT_ASSIGN_LIST;

where the IN_T_UNIT_ASSIGN is defined as:

typedef struct

{

 UNITID tUnitId;

 BYTE byBooth;

 BYTE byDesk;

} IN_T_UNIT_ASSIGN;

where:

wNrOfUnits The number of unit list entries actual present in the
tUnitAssignList array. Only this amount of array elements is
transmitted. This value never exceeds the constant
DBSC_MAX_INTSEAT.

tUnitAssignList [] Array holding the list of unit assignments (see notes below).

wUnitId Unit Identifier of the interpreter

byBooth The assigned booth number, with the values 1…31

byDesk The assigned desk number, with the values 1…6

DCN Next Generation Open Interface Release 4.1 en | 118

Bosch Security Systems | 2013 March

The assignment list cannot contain duplicate entries (e.g. unit id's or booth/desk
combinations). At most one unit can be assigned to a booth/desk combination. Units can be
assigned to already occupied booth/desk combinations. If the current occupant is not in the
assignment list then it will be overwritten and the settings will be discarded. If it is in the list
then the settings remain untouched. This includes the settings for the output channels (such
as the A and B channels). Only units that have not been assigned before get the default
settings. The order of the list is also irrelevant.

Response structure from the function
The function has no response parameters.

Error codes returned
IN_E_NOERROR
IN_E_APP_NOT_STARTED
IN_E_WRONG_PARAMETER
IN_E_UNKNOWN_UNIT
IN_E_MEMORY_ALLOC_FAILED

Related functions
IN_C_UNASSIGN_UNIT

7.2.3.20 IN_C_UNASSIGN_UNIT
Purpose
This function is used to unassign unit(s) to the given booth and desk numbers.

Parameter structure for the function
The function requires the following structure as parameter:

typedef struct

{

 WORD wNrOfUnits;

 UNITID tUnitList[DBSC_MAX_INTSEAT];

} IN_T_RFS_UNIT_LIST;

where:

wNrOfUnits The number of unit list entries actual present in the
tUnitAssignList array. Only this amount of array elements is
transmitted. This value never exceeds the constant
DBSC_MAX_INTSEAT.

tUnitList[] Array holding the list of unit ids.

Response structure from the function
The function has no response parameters.

Error codes returned
IN_E_NOERROR
IN_E_APP_NOT_STARTED
IN_E_WRONG_PARAMETER
IN_E_UNKNOWN_UNIT
IN_E_UNKNOWN_INTSEAT

Related functions
IN_C_ASSIGN_UNIT

7.3 Update Notifications

7.3.1 Introduction
This chapter describes the various update notifications sent by the CCU. All the update
notifications of the IN application are listed in this chapter.

7.3.1.1 Update notification item explanation
Each update notification description consists of the following items:

DCN Next Generation Open Interface Release 4.1 en | 119

Bosch Security Systems | 2013 March

• Purpose
A global description of the purpose of the notification.

• Notify structure with this update
The information passed with the update notification.

DCN Next Generation Open Interface Release 4.1 en | 120

Bosch Security Systems | 2013 March

7.3.1.2 Unit/user event relations
As we have mentioned in section 5.1.1, update notifications are not only the result of remote functions generated by the remote controller, but can also
be the result of (interpreter) unit/user events. It was also mentioned in section 5.1.1 that the relation between the unit/user events and the update
notifications is indirect (i.e. asynchronous).

This section gives information about the events coming from a unit/user or a remote controller and the processing done for the events. In the table
below an overview is made about the events and the actions performed.

Event IN_C_CCU_CON
FIG

IN_C_CHAN_STA
TUS

IN_C_FLASHI
NG_MIC_ON

IN_C_FLOO
R_DISTRIB
UTION

IN_C_LANGUA
GE_LIST

IN_C_SPEAKS
LOWLY_SIGN

IN_C_HELP_SI
GN

Start remote control (i.e. call to
IN_C_START_IN_APP9)

X X X X X X X

Stop remote control (i.e. call to
IN_C_STOP_IN_APP10)

- - - - - - -

Start remote monitoring (i.e. call to
IN_C_START_MON_IN)

X X X X X X X

Stop remote monitoring (i.e. call to
IN_C_STOP_MON_IN)

- - - - - - -

CCU receives a new language list from the
remote controller (i.e. call to
IN_C_DOWNLOAD_LANGLIST)

- - - - X - -

Configuration of the interpreter desks concerning
the microphone bar when engaged has changed
(i.e. call to IN_C_SET_FLASH_MIC_ON)

- - X - - - -

Configuration of the interpreter desks concerning
distribution of the floor signal on the outgoing
channel in case no interpretation is performed has
changed (i.e. call to IN_C_SET_FLOOR_DIST)

- - - X - - -

Configuration of the interpreter desks concerning
the enabling of speak slowly signaling has
changed (i.e. call to
IN_C_SET_SPEAKSLOWLY_SIGN)

- - - - - X -

Configuration of the interpreter desks concerning
the enabling of help signaling has changed (i.e.
call to IN_C_SET_HELP_SIGN)

- - - - - - X

Microphone on - X - - - - -

Microphone off - X - - -

9 These update events will also occur when using IN_C_SIGNAL_CCU function with arguments IN_C_WITH_PC.
10 These update events will also occur when using IN_C_SIGNAL_CCU function with arguments IN_C_STAND_ALONE.

DCN Next Generation Open Interface Release 4.1 en | 121

Bosch Security Systems | 2013 March

Event IN_C_CCU_CON
FIG

IN_C_CHAN_STA
TUS

IN_C_FLASHI
NG_MIC_ON

IN_C_FLOO
R_DISTRIB
UTION

IN_C_LANGUA
GE_LIST

IN_C_SPEAKS
LOWLY_SIGN

IN_C_HELP_SI
GN

Select A as active out channel11 - X/- - - -

Select B as active out channel11 - X/- - - -

Start install mode11 - X/- - - -

Stop install mode12 X/- X X/- - - X/- X/-

Select floor signal as incoming channel11 - X/- - - -

Select relay signal as incoming channel11 - X/- - - -

Select autorelay signal as incoming channel11 - X/- - - -

11 This action only leads to the shown notification if the microphone of the interpreter desk is turned on when the action is performed. If the microphone is off, performing the
action will not lead to any update notifications.
12 If the CCU controls the IN application (i.e. no remote controller connected), the interpreter desks have a full installation menu. Therefore more settings than present in the
IN_C_CHAN_STATUS notification can be changed. Due to this reason the IN_C_CCU_CONFIG, IN_C_FLASHING_MIC_ON. IN_C_SPEAKSLOWLY_SIGN and
IN_C_HELP_SIGN update notification are also sent, but only when there is no remote controller.

DCN Next Generation Open Interface Release 4.1 en | 122

Bosch Security Systems | 2013 March

7.3.2 IN General notifications

7.3.2.1 IN_C_CHAN_STATUS
Purpose
Notifies the remote controller of a status update.

Notify structure with this update
The update comes with the following structure:

struct

{

 BOOLEAN bConnectChanges;

 IN_T_MICSTAT tIntMics;

 IN_T_ACTIVECHAN tInActiveChan;

 IN_T_CHANNELS tAChannels;

 IN_T_CHANNELS tBChannels;

 IN_T_CHANNELS tInChannels;

};

where the structures IN_T_MICSTAT, IN_T_ACTIVECHAN and IN_T_CHANNELS are defined as:

typedef struct

{

 UNITID wUnitId;

 BOOLEAN bMicStatus;

} IN_T_MICSTAT[DBSC_MAX_INTBOOTH][DBSC_MAX_DESK_PER_BOOTH];

typedef CHAR IN_T_ACTIVECHAN[DBSC_MAX_INTBOOTH][DBSC_MAX_DESK_PER_BOOTH];

typedef BYTE IN_T_CHANNELS[DBSC_MAX_INTBOOTH][DBSC_MAX_DESK_PER_BOOTH];

in which a UNITID is defined as:

typedef WORD UNITID;

where:

bConnectChanges TRUE if there was a change in connected units (i.e. interpreter
desks were connected or disconnected) since the last status
update
FALSE if there was no change in connected units since the last
update.

tIntMics Matrix holding the microphone status information of the
connected interpreter desks. Each matrix element is defined as
an IN_T_MICSTAT structure that is defined below. Every
element holds the information of one particular desk in one
particular booth. The position in the matrix defines the desk and
booth number of the unit (interpreter desk). Adding the value 1
to the indexes of the matrix retrieves the booth and desk
number, e.g. tIntMics[0][1] hold the data of the interpreter desk
located in booth 1 with desk number 2.

tInActiveChan Matrix holding the active out channels of the connected units.
The value of the matrix elements is either ‘A’ or ‘B’.

tAChannels Matrix holding the A out channels of the connected units.

tBChannels Matrix holding the B out channels of the connected units.

tInChannels Matrix holding the incoming channels of the connected units.

wUnitId Unit Identifier. If there is no unit assigned to the desk
and booth number this identifier belongs to, it will have
the value DCNC_UNASSIGNED_UNIT.

bMicStatus TRUE if the microphone of the unit is on
FALSE if the microphone of the unit is off.

DCN Next Generation Open Interface Release 4.1 en | 123

Bosch Security Systems | 2013 March

7.3.2.2 IN_C_CCU_CONFIG
Purpose
Notifies the remote controller of a configuration update.

Notify structure with this update
The update comes with the following structure:

struct

{

 BYTE byBetweenLock;

 BYTE byWithinLock;

 BYTE byMaxChans;

 WORD wVerLangList;

 IN_T_CHANNELLANG tChanLang;

};

where the structure IN_T_CHANNELLANG is defined as:

typedef BYTE IN_T_CHANNELLANG[DBSC_MAX_INTERPRT_CHANNEL];

where:

byBetweenLock Interlock mode between booths, which can be one of the
following values:

• IN_C_NONEMODE
• IN_C_OVERRIDE
• IN_C_INTERLOCK
• IN_C_OVERRIDE_ON_B_ONLY

byWithinLock Interlock mode within a booth, see byBetweenLock for the

possible values, except for the IN_C_OVERRIDE_ON_B_ONLY
interlock mode

byMaxChans The number of assigned channels. Range:
1..DBSC_MAX_INTERPRT_CHANNEL.

wVerLangList Version of the language list. This can be one of the following
constants:

• IN_C_ENG_LANG_LIST_ID (standard English list)
• IN_C_FR_LANG_LIST_ID (standard French list)
• IN_C_ORG_LANG_LIST_ID (original language list)
• IN_C_CUS_LANG_LIST_1_ID (custom language list 1)
• IN_C_CUS_LANG_LIST_2_ID (custom language list 2)
• IN_C_CUS_LANG_LIST_3_ID (custom language list 3)

tChanLang Array with language per channel. Only the first byMaxChans
values of this array are useful, the rest of the elements hold the
default value IN_C_DEF_LANG. If the channel languages have
been set using IN_C_CHANNEL_UPDATE (see 7.2.3.10), the
channel languages shown in this array are equal to the values
passed in IN_C_CHANNEL_UPDATE. E.g. if the channel
language 1 was passed for channel 1 in
IN_C_CHANNEL_UPDATE (tChannelLang[0] = 1), channel
language 1 will also be shown for channel 1 in this structure
(tChanLang[0] = 1). Range: 1..DBSC_MAX_LANGNAME.

7.3.2.3 IN_C_FLASHING_MIC_ON
Purpose
Notifies the remote controller of the flashing microphone button ring setting.

Notify structure with this update
The update comes with the following structure:

BOOLEAN bFlashingWhenEngaged

where:

DCN Next Generation Open Interface Release 4.1 en | 124

Bosch Security Systems | 2013 March

bFlashingWhenEngaged TRUE if the microphone button ring flashes when engaged
FALSE if the microphone button ring does not flash when
engaged.

7.3.2.4 IN_C_FLOOR_DISTRIBUTION
Purpose
Notifies the remote controller of the floor distribution setting.

Notify structure with this update
The update comes with the following structure:

BOOLEAN bFloordistribution

where:

bFloorDistribution TRUE if the floor signal is distributed on the outgoing channel
when no interpretation is performed
FALSE if no signal is distributed on the outgoing channel when
no interpretation is performed.

7.3.2.5 IN_C_LANGUAGE_LIST
Purpose
Notifies the remote controller of a language list update.

Notify structure with this update
The update comes with the following structure:

struct

{

 WORD wVersionOfLangList;

 struct IN_T_LANGLIST tLangList[DBSC_MAX_LANGNAME];

};

where the struct IN_T_LANGLIST is defined as:

struct IN_T_LANGLIST

{

 WORD wAudioLangId;

 CHAR szLangName[DBSC_NCHAR_LANGNAME];

 CHAR szLangAbbr[DBSC_NCHAR_LANGABBR];

};

where:

wVersionOfLangList Version of the language list. This can be one of the following
constants:

• IN_C_ENG_LANG_LIST_ID (standard English list)
• IN_C_FR_LANG_LIST_ID (standard French list)
• IN_C_ORG_LANG_LIST_ID (original language list)
• IN_C_CUS_LANG_LIST_1_ID (custom language list 1)
• IN_C_CUS_LANG_LIST_2_ID (custom language list 2)
• IN_C_CUS_LANG_LIST_3_ID (custom language list 3)

tLangList Array holding the actual language list information. Each array
element is defined as an IN_T_LANGLIST structure that is
defined below. If the version of the language list is
IN_C_ENG_LANG_LIST_ID or IN_C_FR_LANG_LIST_ID, this
array will be filled with dummy values (i.e. all language
identifiers are 0 and all strings are empty). If the version of the
language list is IN_C_ORG_LANG_LIST_ID, the array can also
be filled with dummy values. This is the case, if the version of
the language list was set by an interpreter desk in its install
menu (in which case the predefined original language list is
used). In case the original language list was downloaded by a
remote controller (see IN_C_DOWNLOAD_LANGLIST in
7.2.3.11), the array will contain the downloaded language list

DCN Next Generation Open Interface Release 4.1 en | 125

Bosch Security Systems | 2013 March

information.

wAudioLangId The Identifier of the audio language.

szLangName Name of the audio language.

szLangAbbr Abbreviation of the audio language.

7.3.2.6 IN_C_SPEAKSLOWLY_SIGN
Purpose
Notifies the remote controller of the status of speak slowly signaling.

Notify structure with this update
The update comes with the following structure:

BOOLEAN bSpeakSlowlySign

where:

bSpeakSlowlySign TRUE if speak slowly signaling is enabled.
FALSE if speak slowly signaling is disabled.

7.3.2.7 IN_C_HELP_SIGN
Purpose
Notifies the remote controller of the status of help signaling.

Notify structure with this update
The update comes with the following structure:

BOOLEAN bHelpSign

where:

bHelpSign TRUE if help signaling is enabled.
FALSE if help signaling is disabled.

DCN Next Generation Open Interface Release 4.1 en | 126

Bosch Security Systems | 2013 March

8. PARLIAMENTARY AND MUTLI VOTING

8.1 Internal Functioning Voting application
The voting application present in the CCU is set up as an engine capable of handling parliamentary
kind of voting’s. For all voting rounds to be carried out, you can identify common aspects for each
different kind of voting.

The voting application uses the common aspects to control the voting requested. Some of these
common aspects are:

• Subject of the voting
• The kind of the voting (e.g. parliamentary voting with “Yes”, “No“ & Abstain” answers)
• General setting (e.g. voting time limit, etc.)

More details on the complete parliamentary voting application can be found in the appropriate user
manuals.

8.1.1 Voting subject
The Voting subject is controlled by the remote function VT_C_DOWNLOAD_SUBJECT. This remote
function passes the subject text along with a motion number as subject identifier to the CCU. The
CCU in his turn uses the motion number to identify the subject handled.

8.1.2 Voting kind
The voting kind determines the kind of voting to run by the voting application. The voting kind is
controlled by the remote function VT_C_SET_VOTINGPARAMS. This remote function passes the
kind of the voting (e.g. "parliamentary"), the number of answer options (e.g. "3"), the answer menu
settings (e.g. "Yes, Abstain, No"), etc. to the CCU. More parameters to complete the identification of
the voting kind must be passed to the CCU. A complete list of parameters can be found at the
remote function description in section 8.2.2.8.

8.1.3 General Voting setting
The general voting settings are mostly common for multiple voting rounds (done over different kind of
voting’s). These settings include settings like:

• Voting time limit
Shows how many minutes and seconds the delegates have to complete their vote.

• Voting LED’s
Shows the vote done using the LED’s on the delegate's unit or use one of the secret voting
sequences available.

• First vote counts
Informs that the first vote entered (TRUE) or the last vote entered (FALSE) by the delegate
counts.

Detailed information about all the general voting settings can be found at the description for the
remote function VT_C_SET_GLOBAL_SETTINGS (section 8.2.2.9).

8.1.4 Communication settings
Not mentioned by the common aspects are the communication settings. These settings are used to
control how the communication of the results should take place. The results can be sent to the
remote controller using update notification (VT_C_RESULTSNOTIFY), or the results are not
automatically sent to the remote controller. In the latter case the remote controller must collect the
results using remote function (VT_C_GET_RESULTS).

Besides the selection of collecting the results (automatic of manual), these settings also includes the
way results could be received. A selection can be made to receive the results compressed or normal.
The next section explains the compressed result structure in more depth.

DCN Next Generation Open Interface Release 4.1 en | 127

Bosch Security Systems | 2013 March

8.1.4.1 Result structure format definition
As stated in the communication settings the results could be received normally or compressed. For
both communication settings the same structure is used.

typedef struct

{

 WORD wVotingNumber;

 DWORD dwNrOfPresent;

 DWORD dwNrOfNotVoted;

 DWORD dwNrOfVotes [VT_C_MAX_ANSWER_OPTIONS];

 WORD wFillLevel;

 BOOLEAN bCompressed;

 BYTE byDelegateVotes [VT_C_MAX_RESULT_DELEGATE];

} VT_T_RESULT_REC;

where:

wVotingNumber The voting number as set during the
VT_C_DOWNLOAD_SUBJECT remote function.
The value VT_C_STANDALONE_VOTING indicates that no
subject was downloaded before the start of the voting.

dwNrOfPresent Total number of delegates which are present for the voting
round. Range 0-DBSC_MAX_DELEGATE.

dwNrOfNotVoted Total number of delegates which have not voted yet. For the
record: these delegates are present for the voting. So
dwNrOfNotVoted <= dwNrOfPresent.

dwNrOfVotes Array with in each array-element the total of casted votes for
that answer-option, whereby the last item in the array holds the
total voting weight of the not voters. The total is calculated by
taking the sum of the delegates who have casted this particular
vote multiplied by their vote-weight.

wFillLevel Highest array index available in the ‘byDelegateVotes’ array.
Range 0-VT_C_MAX_RESULT_DELEGATE.

bCompressed Inform that the ‘byDelegateVotes’ is compressed or not.
Possible values are:

TRUE The array is compressed and holds the results of
two delegates in each array-element.

FALSE The array is not compressed. One delegate-
information in each array-element.

byDelegateVotes Array containing the vote per delegate. The index is based on
the DelegateId - 1. When the results are not compressed, each
element contains the vote of one delegate. If the results are
compressed, each element contains the vote of two delegates.
The high nibble of the element contains the vote of an even
DelegateId and the low nibble of the element contains the vote
of an uneven DelegateId.

Note that for this array only the number of array-elements as
stored in the parameter ‘wFillLevel’ is actual transmitted
between the CCU and the remote controller.

Note when using compressed results, the lower nibble of the
possible answer values is also taken. This means that the
‘nibble’-value 0xE means VT_C_VOTE_NOT_VOTED and
‘nibble’-value 0xF means VT_C_VOTE_UNASSIGNED.

Due to the limitation of the data-length of the structure both communication settings have their
restrictions, which are:

Normal The ‘byDelegateVotes’ holds for each element (read byte) the vote-result
of one delegate. This means that the structure can hold information for
VT_C_MAX_RESULT_DELEGATE delegates. When there are more

DCN Next Generation Open Interface Release 4.1 en | 128

Bosch Security Systems | 2013 March

delegates in the system you cannot use this way of receiving.

Compressed The ‘byDelegateVotes’ holds for each element (read byte) the vote-result
of two (2) delegates. Using the compressed way of receiving results the
structure can hold 2 * VT_C_MAX_RESULT_DELEGATE delegates,
which is large enough to hold all delegates.

However the vote-result is now stored in the upper or lower nibble of a
byte. This implies that the total number of possible answers is limited to
14 answers (2 answer values are always reserved for ‘not-present’ and
‘present-and-not-voted’). This limitation of the number of answers inhibits
certain voting-kinds, which are not discussed further in this document.
Note that the parliamentary type of voting only uses 3 answer-options.

As a result of both restrictions we can take the conclusion that we cannot receive the voting result of
voting-kinds, which use more that 14 answer options and if the system holds more than
VT_C_MAX_RESULT_DELEGATE delegates.

Delegate voting result organization
The delegate voting results are organized in a list of delegate’s, whereby the DelegateId is used as
index in the list. The complete list is stored in the ‘byDelegateVotes’ array using either normal or
compressed storage.

Because the DelegateId is used as index within the list, the minimum length of the list is equal to the
highest DelegateId present in the downloaded delegate-database. This implies that the list may
contain holes in the DelegateId-numbering. For each not used DelegateId in of the delegate-
database, the voting result is set to VT_C_VOTE_UNASSIGNED.

Example: The downloaded delegate-database consists of the DelegateId’s 1, 2, 3 and 8. This
implies that the highest DelegateId’s is equal to 8 and therefore the list gets the length of 8 delegates.
For each DelegateId not in the delegate-database (DelegateId’s 4-7) the voting result is set to
VT_C_VOTE_UNASSIGNED. The other used DelegateId’s can get the following values (for
Parliamentary Voting type with 3 answers):

VT_C_VOTE_NOT_VOTED The delegate is present, but has not casted a vote (yet).
VT_C_VOTE_YES The delegate is present and has casted the ‘Yes’ vote.
VT_C_VOTE_NO The delegate is present and has casted the ‘No’ vote.
VT_C_VOTE_ABSTAIN The delegate is present and has casted the ‘Abstain’ vote.
VT_C_VOTE_NPPV The delegate is present and has chosen the ‘NPPV’ vote.

Note that for the result values only the lower nibble is used when the voting result is stored in the
‘byDelegateVotes’ array using the compressed storage form.

8.1.5 Default settings voting application
As mentioned in the sections above, setting of the voting application can be changed using remote
functions. But after successfully executing the VT_C_START_APP remote function, the remote
controller could directly start a voting round without first setting the subject and/or voting parameters
(global and voting kind).

In this particular case the voting is started with the settings as present during the standalone
operation of the voting application. During power-on of the DCN Next Generation-system all settings
will get their default values. When a remote controller already had called remote voting functions,
some setting still have their last values as set by that remote controller (see also §8.1.5.1). The
default (power-on) values for the remote functions are:

Voting subject The voting number is set to zero and the subject text and legend texts
are set to empty strings. In C-source lines:

wVotingNumber = VT_C_STANDALONE_VOTING;

szVotingSubject = “”;

szLegendSubject = “”;

This means that there is no subject text available on the unit LCD’s.
More information about the parameters can be found in section
8.2.2.7.

Voting parameters The voting parameters consist of various parameters which have the

DCN Next Generation Open Interface Release 4.1 en | 129

Bosch Security Systems | 2013 March

following default values:

wVotingMenu = VT_C_MENU_YES_NO_ABSTAIN;

wNrOfAnswerOptions = 3;

bOpenVoting = FALSE;

wInterimResultType = VT_C_INT_RES_NONE;

More information about the parameters can be found in section
8.2.2.8.

General voting
settings

The general voting settings consists of many parameters which have
the following default values:

wVotingLedMode = VT_C_LED_SHOWVOTE;

wPresentVotes = VT_C_100_PRESENT_KEY;

bShowVoteTimer = FALSE;

wVoteTimerLimit = 0;

bReserved1 = FALSE;

bAutoAbstain = FALSE;

bReserved2 = TRUE;

bVoteWeightingOn = FALSE;

bReserved3 = FALSE;

bFirstVoteCount = FALSE;

More information about the parameters can be found in section
8.2.2.9.

8.1.5.1 Standalone settings
During startup of the DCN Next Generation-system (power-on) the voting settings are set to their
initial values as described in §8.1.5.

However, when the DCN Next Generation-system was controller by a Remote Controller, and new
settings were enabled. After stopping the voting application (Call to function VT_C_STOP_APP)
some voting settings remain active during the standalone period. These settings are:

Parameters Value
 VT_C_SET_GLOBAL_SETTING remote function
wVotingLedMode This setting remains unchanged.

wPresentVotes In case VT_C_100_AUTHORISED_VOTES was
selected, the value of ‘wPresentVotes’ will change
to VT_C_100_VALID_VOTES.
For the others of ‘wPresentVotes’, the settings
remains unchanged.

bFirstVoteCounts This setting remains unchanged.

All other settings will return to their default values as described in §8.1.5.

The settings remain valid until either the power is turn off, or a remote controller is started, which
changes the settings.

8.1.6 Allowed settings without delegate-database present
The standard use of the voting application will be in combination with a downloaded delegate-
database.

However, it is possible to start a voting round without a downloaded delegate-database. In this case
the parameter value ranges are limited, because some settings require the presence of a delegate-
database.

In the table below an overview is given of the parameters with reduced setting due to the absence of
the delegate-database. The table shows the parameters of the remote functions
VT_C_SET_VOTINGPARAMS and VT_C_SET_GLOBAL_SETTINGS. When a parameter is not
present in the table, the value range, as described with the remote function, remains valid.

Parameters Value
 VT_C_SET_VOTINGPARAMS remote function

DCN Next Generation Open Interface Release 4.1 en | 130

Bosch Security Systems | 2013 March

bOpenVoting Only a closed voting is valid, therefore FALSE

wInterimResultType VT_C_INT_RES_NONE
VT_C_INT_RES_TOTAL
VT_C_INT_RES_TOTAL_PC_ONLY

 VT_C_SET_GLOBAL_SETTING remote function
wPresentVotes VT_C_100_PRESENT_KEY

VT_C_100_VALID_VOTES
VT_C_100_PRESENT_KEY_AND_FRAUD
VT_C_100_EXTERNAL_PRESENT

bVoteWeightingOn FALSE

Note that when no delegate-database is present in the DCN Next Generation-system and other
parameter settings are used, the remote function returns with the error-code
VT_E_NO_NAMESFILE.

8.2 Remote Functions

8.2.1 Introduction
This chapter describes the various remote functions available to handle the voting application. A
global description of the remote function handling is described in chapter 2.

This chapter also gives a description about the type used within this document.

8.2.1.1 Remote function item explanation
Each description consists of the following items:

• Purpose
A global description of the purpose of the function.

• Parameter structure for the function
The input parameters needed to fulfill the function. When the function requires no parameters, no
structure is described here.

• Response structure from the function
The output information coming from the function called. This information is only valid when the
‘wError’ field of the received response information equals VT_E_NOERROR.

• Error codes returned
The error values returned in the ‘wError’ field of the received response information. All possible
error codes are described in appendix Appendix C Error Codes.

• Update notifications
The update notifications which are generated after the execution of the remote function. When
there are no notifications generated, then this part will be omitted.

• Related functions
The related function in conjunction with the function described. It refers to other remote functions
and to related update notifications.

8.2.2 Voting functions

8.2.2.1 VT_C_START_APP
Purpose
Indicate the CCU that the remote controller wants to communicate with the VT application inside the
CCU. After receiving this function the CCU gives the control for VT to the remote controller.

When you omit the execution of this remote function, all other remote functions will have no effect
and will return an error (VT_E_APP_NOT_STARTED).

Parameter structure for the function
The function requires the following structure as parameter:

DCN Next Generation Open Interface Release 4.1 en | 131

Bosch Security Systems | 2013 March

typedef struct

{

 BOOLEAN bResultNotify;

 BOOLEAN bReserved;

 WORD wViewTimeAfterStop;

} VT_T_COMCONTROL;

where:

bResultNotify Informs the voting application to send update notifications for
the interim results processed. The following settings are valid:

TRUE When Update notifications are created, they will be
sent to the remote controller using update
notifications.

FALSE No update notifications are sent to the remote
controller. The remote controller can however
collect the result using remote functions.

bReserved Must be FALSE

wViewTimeAfterStop The time in seconds that the “End of voting” text remains on
the display of the delegate units. After this time the current
main menu (e.g. Microphone menu) becomes active again.
The value-range is 0-200 seconds.

Response structure from the function
The function has no response parameters.

Error codes returned
VT_E_NOERROR
VT_E_INCONTROL_OTHER_CHANNEL
VT_E_INCONTROL_THIS_CHANNEL

Related functions
VT_C_STOP_APP

8.2.2.2 VT_C_STOP_APP
Purpose

Indicate the CCU that the remote controller no longer requires to communicate with the VT
application inside the CCU. After receiving this function the CCU takes over the control for VT.

If a voting is running, the CCU will stop the voting.

All Settings for the voting-kind, the global settings and subject settings are reset to their default
values as described in section 8.1.5.

Note that: Upon communication lost this function will be activated, if VT_C_START_APP was
activated.

Parameter structure for the function
The function has no additional parameters.

Response structure from the function
The function has no response parameters.

Error codes returned
VT_E_NOERROR
VT_E_NOT_IN_CONTROL

Related functions
VT_C_START_APP

DCN Next Generation Open Interface Release 4.1 en | 132

Bosch Security Systems | 2013 March

8.2.2.3 VT_C_START_VOTING
Purpose
This function starts the voting. The parameters for the voting must be set using the setting functions
(VT_C_DOWNLOAD_SUBJECT, VT_C_SET_VOTINGPARAMS and VT_C_SET_GLOBAL_SETTINGS). When one
or more of these remote functions are not called, the previous or default values will be used.

As a result of starting the voting the update notification will be sent to the remote controller. As long
as the VT_C_STOP_VOTING remote function is not called, the CCU will send update notifications to
the remote controller if the “bResultNotify” parameter of VT_T_COMCONTROL structure of the
VT_C_START_APP was set to TRUE.

Parameter structure for the function
The function has no additional parameters.

Response structure from the function
The function has no response parameters.

Error codes returned
VT_E_NOERROR
VT_E_VOTE_RUNNING
VT_E_APP_NOT_STARTED

Update notifications
VT_C_RESULTSNOTIFY

Related functions
VT_C_STOP_VOTING
VT_C_HOLD_VOTING
VT_C_RESTART_VOTING

8.2.2.4 VT_C_STOP_VOTING
Purpose
This function stops the running voting round.

Parameter structure for the function
The function requires the following structure as parameter:

typedef struct

{

 BOOLEAN bShowResults;

} VT_T_SHOW_RESULTS;

where:

bShowResults Indicate if the voting results will be displayed on the unit LCD’s.
This is only functioning, if the results are sent to the remote
controller only (see remote function
VT_C_SET_VOTINGPARAMS for details). Possible values are:

TRUE The total-result will be sent to all units LCD’s.

FALSE The unit LCD’s only reports the sentence “End of
voting”.

Response structure from the function
The function has no response parameters.

Error codes returned
VT_E_NOERROR
VT_E_VOTE_NOT_RUNNING
VT_E_APP_NOT_STARTED

Related functions
VT_C_START_VOTING
VT_C_HOLD_VOTING
VT_C_RESTART_VOTING

DCN Next Generation Open Interface Release 4.1 en | 133

Bosch Security Systems | 2013 March

8.2.2.5 VT_C_HOLD_VOTING
Purpose
This function allows the remote controller to hold a running vote round.

Parameter structure for the function
The function has no additional parameters.

Response structure from the function
The function has no response parameters.

Error codes returned
VT_E_NOERROR
VT_E_VOTE_NOT_RUNNING
VT_E_APP_NOT_STARTED

Related functions
VT_C_START_VOTING
VT_C_STOP_VOTING
VT_C_RESTART_VOTING

8.2.2.6 VT_C_RESTART_VOTING
Purpose
This function allows the remote controller to restart a voting round.

Parameter structure for the function
The function has no additional parameters.

Response structure from the function
The function has no response parameters.

Error codes returned
VT_E_NOERROR
VT_E_VOTE_NOT_ON_HOLD
VT_E_APP_NOT_STARTED

Update notifications
VT_C_RESULTSNOTIFY

Related functions
VT_C_START_VOTING
VT_C_STOP_VOTING
VT_C_HOLD_VOTING

8.2.2.7 VT_C_DOWNLOAD_SUBJECT
Purpose
This function allows the remote controller to transmit a subject to the CCU while no voting round is
running.

Parameter structure for the function
The function requires the following structure as parameter:

typedef struct

{

 WORD wVotingNumber;

 CHAR szVotingSubject[VT_C_MAX_LEN_SUBJECT];

 CHAR szLegendSubject[VT_C_MAX_LEN_LEGEND];

} VT_T_SUBJECT_REC;

where:

wVotingNumber The number of the voting which will be started. This number will
be used as reference during the update notifications. The value-
range is 1-9999. The value VT_C_STANDALONE_VOTING is
reserved by the initial state on the CCU (no subject download
received).

szVotingSubject [] Subject of the voting, which will be displayed on the unit LCD’s.
The subject will internally be divided into 4 lines. Each line

DCN Next Generation Open Interface Release 4.1 en | 134

Bosch Security Systems | 2013 March

consists of DBSC_NCHAR_SCREENLINE characters. It is the
responsibility of the remote controller that each line is extended
with spaces till DBSC_NCHAR_SCREENLINE characters per line.

szLegendSubject [] ‘Voting number’ Legend. This text is put before the voting-
number on the units LCD’s. The purpose of this legend is to
clarify the meaning of the voting number (e.g. “Motion:” or “Vote
Nr:”).

Response structure from the function
The function has no response parameters.

Error codes returned
VT_E_NOERROR
VT_E_VOTE_RUNNING
VT_E_APP_NOT_STARTED
VT_E_WRONG_PARAMETER

8.2.2.8 VT_C_SET_VOTINGPARAMS
Purpose
This function allows the remote controller to set the kind of voting on the CCU for the next voting to
be run. These settings can only be sent to the CCU when no voting is running.

parameter structure for the function
The function requires the following structure as parameter:

typedef struct

{

 WORD wVotingMenu;

 WORD wNrOfAnswerOptions;

 BOOLEAN bOpenVoting;

 WORD wInterimResultType;

 BOOLEAN bCompressedResults;

} VT_T_VOTINGPARAMS;

where:

wVotingMenu Identify which voting menu is displayed on the unit LCD’s and
LED’s. The setting is one of the following:

• VT_C_MENU_YES_NO
• VT_C_MENU_YES_NO_ABSTAIN
• VT_C_MENU_FOR_AGAINST
• VT_C_MENU_AUDIENCE_RESPONSE
• VT_C_MENU_123
• VT_C_MENU_ABC
• VT_C_MENU_CBA

• VT_C_MENU_YES_NO_ABSTAIN_NPPV

wNrOfAnswerOptions This parameter is coupled to wVotingMenu and identifies how
many answer options are available for the chosen voting menu.

The following table gives an overview of the valid range of
answer options:

Menu # answers / range
VT_C_MENU_YES_NO 2

VT_C_MENU_YES_NO_ABSTAIN 3

VT_C_FOR_AGAINST 2

VT_C_AUDIENCE_RESPONSE 5

VT_C_MENU_123 1-24

DCN Next Generation Open Interface Release 4.1 en | 135

Bosch Security Systems | 2013 March

VT_C_MENU_ABC 1-24

VT_C_MENU_CBA 1-24

VT_C_MENU_YES_NO_ABSTAIN_NPPV 4

bOpenVoting Identify if individual results are available during the vote round.
Possible settings are:

TRUE Open voting
Individual result can be collected by the remote
controller. All values of the parameter
‘wInterimResultType’ are valid.

FALSE Closed voting
No individual results are available. This implies that
the individual values of the parameter
‘wInterimResultType’ are invalid.

wInterimResultType Identify if results will be sent during the vote round and how. If
interim results are available then they will be sent regularly if the
‘bResultNotify’ parameter of the VT_C_START_APP remote
function is set to TRUE. The setting is one of the following:

• VT_C_INT_RES_NONE
• VT_C_INT_RES_TOTAL
• VT_C_INT_RES_INDIV
• VT_C_INT_RES_TOTAL_PC_ONLY
• VT_C_INT_RES_INDIV_PC_ONLY

See table below for explanation about setting values.

bCompressedResults Identify if results will be sent in compressed form as described
in section 8.1.4.1. Possible settings are:

TRUE The voting results will be sent in compressed
format.

FALSE The voting result will be sent in normal format.

How results are displayed on the unit LCD’s and when they are automatically sent to the remote
controller are described in the following table:

wInterimResultType Description

VT_C_INT_RES_NONE Results are only available when the vote round is
stopped or on hold. So when the vote round is running
no interim results are shown on the unit LCD’s. Also the
remote controller can only collect the results when the
voting is stopped or on hold.

VT_C_INT_RES_TOTAL Only total results are available. These results will be
shown on the unit LCD’s during the complete vote
round. The total results can be collected by the remote
controller.

VT_C_INT_RES_INDIV Individual and total results are available and the totals
will be shown on the unit LCD’s. The results can be
collected by the remote controller This setting is only
valid during an open voting.

VT_C_INT_RES_TOTAL_PC_ONLY Total results are available, but can only be collected by
the remote controller. The unit LCD’s will not show any
results.

VT_C_INT_RES_INDIV_PC_ONLY Individual and total results are available, but can only be
collected by the remote controller. The unit LCD’s will
not show any results. This setting is only valid during an
open voting.

Response structure from the function
The function has no response parameters.

DCN Next Generation Open Interface Release 4.1 en | 136

Bosch Security Systems | 2013 March

Error codes returned
VT_E_NOERROR
VT_E_VOTE_RUNNING
VT_E_NO_NAMESFILE
VT_E_WRONG_PARAMETER
VT_E_APP_NOT_STARTED

Related functions
VT_C_START_VOTING

8.2.2.9 VT_C_SET_GLOBAL_SETTINGS
Purpose
This function allows the remote controller to set the global voting settings on the CCU. No voting may
be running during the call to this function.

Parameter structure for the function
The function requires the following structure as parameter:

typedef struct

{

 WORD wVotingLedMode;

 WORD wPresentVotes;

 BOOLEAN bShowVoteTimer;

 WORD wVoteTimerLimit;

 BOOLEAN bReserved1; // must be set to FALSE

 BOOLEAN bAutoAbstain;

 BOOLEAN bReserved2; // must be set to TRUE

 BOOLEAN bVoteWeightingOn;

 BOOLEAN bReserved3; // must be set to FALSE

 BOOLEAN bFirstVoteCount;

} VT_T_GLOBAL_SETTINGS;

where:

wVotingLedMode This setting is an indication whether soft LED’s on the delegate
units will Remain on after casting a vote. Valid values are:

• VT_C_LED_SHOWVOTE
• VT_C_LED_SECRET_ON_OFF
• VT_C_LED_SECRET_FLASH_ON

See the table below for explanation about the setting values

wPresentVotes This setting tells how to determine the number of participants in
a voting. The setting is one of the following:

• VT_C_100_PRESENT_KEY
• VT_C_100_VALID_VOTES
• VT_C_100_AUTHORISED_VOTES
• VT_C_100_PRESENT_KEY_AND_FRAUD
• VT_C_100_EXTERNAL_PRESENT

See the table below for explanation about setting values.

bShowVoteTimer Identify if a timer is used during the vote round. Valid values are:

TRUE The vote timer must be displayed on each unit LCD
and shall count down to zero.

FALSE No voting timer is shown.

wVoteTimerLimit The vote time limit. On all displays, the remaining time will be
displayed. If the timer reaches 0, it's the responsibility of the
remote controller to stop/hold the vote round. The range of the
voting time is 0-3600 seconds

bReversed1 Must be set to FALSE.

bAutoAbstain Identify if the initial vote of all participating delegates
automatically will change from ‘Not Voted’ to ‘Abstain’ for a

DCN Next Generation Open Interface Release 4.1 en | 137

Bosch Security Systems | 2013 March

Parliamentary voting with 3 answer options (No, Abstain, Yes).
For all other voting kinds this flag will be ignored. Valid values
are:

TRUE The initial vote is automatically set to abstain.

FALSE The initial vote is set to not-voted.

bReserved2 Must be TRUE

bVoteWeightingOn If this setting is on the votes will be weighted. Only the answer
option will be weighted. The numbers of ‘Present’ and ‘Not
Voted’ delegates are absolute. Valid values are:

TRUE The voting is weighted. Each delegate uses its vote-
weight as set in the downloaded names-file (see
chapter 4).

FALSE The voting is not weighted. Each delegate has the
weight of 1 (one).

bReserved3 Must be set to FALSE.

bFirstVoteCount If this setting is set to TRUE, delegates do not have the
opportunity to change their vote when they have already cast a
vote for the current vote round.
Note that a TRUE value of the parameter disables the value of
the parameter bAutoAbstain. bAutoAbstain is then always
considered to be FALSE.

In the following table is described how the led-option operates:

wVotingLedMode Description
VT_C_LED_SHOWVOTE The LED’s next to the softkeys represents the last

casted vote done.
VT_C_LED_SECRET_ON_OFF When a delegate casts his vote, all soft LED’s will be on

for about 1 second and then they will be turned off.
VT_C_LED_SECRET_FLASH_ON When a delegate casts his vote, all soft LED’s will be

flashing for about 2 seconds and then they will be
turned on.

In the following table is described how the number of ‘Present’ and ‘Not Voted’ delegates is
determined:

wPresentVotes Description
VT_C_100_PRESENT_KEY No database present:

Every unit is prompted for present
Database is present:
All delegates who have voting authorization
and a unit are asked to press the present
key (softkey 1) before they can vote.
The number of present delegates is equal
to the delegates who have pressed the
present key. When a delegate has pressed
his present key, the number of ‘Not Voted’
delegates will be increased with 1. When a
delegate cast a vote, the number of ‘Not
Voted’ will be decreased with 1.

VT_C_100_VALID_VOTES The number of ‘Present’ delegates is equal
to the number of delegates who have
casted a vote.
The number of ‘Not Voted’ delegates is
always equal to 0.

VT_C_100_AUTHORISED_VOTES The number of ‘Present’ delegates is equal
to the number of delegates who have
voting authorization. The number of ‘Not

DCN Next Generation Open Interface Release 4.1 en | 138

Bosch Security Systems | 2013 March

Voted’ delegates is equal to the number of
‘Present ’ delegates as long as nobody
casts a vote. When a delegate’s
functionality for voting is not authorized he
will not be counted for the vote round.

VT_C_100_PRESENT_KEY_AND_FRAUD

All delegates have to press both the
present key and the fraud switch at the
same time before actually casting a vote.
Only delegates that pressed both keys will
count.

VT_C_100_EXTERNAL_PRESENT

All delegates have to activate the external
present contact before actually casting a
vote. Only delegates that activated the
external present contact will count.

Note that this functionality of ‘wPresentVotes’ depends on the use of the delegate database, the
external contact and/or the attendance application, see chapter 3, 4 and 9 for more information.
Note: If the Attendance application is started, but nothing is activated, all delegates have voting
authorization.

Response structure from the function
The function has no response parameters.

Error codes returned
VT_E_NOERROR
VT_E_VOTE_RUNNING
VT_E_NO_NAMESFILE
VT_E_WRONG_PARAMETER
VT_E_APP_NOT_STARTED

8.2.2.10 VT_C_GET_RESULTS
Purpose
This function allows the remote controller to retrieve the voting results during a vote round.

Parameter structure for the function
The function has no additional parameters.

Response structure from the function
The function returns the structure VT_T_RESULT_REC. This structure is defined in section 8.1.4.1.

Error codes returned
VT_E_NOERROR
VT_E_NO_RESULTS
VT_E_APP_NOT_STARTED

Related functions
VT_C_START_VOTING
VT_C_STOP_VOTING

8.2.2.11 VT_C_GET_ATTENTION_TONE
Purpose
This function allows the remote controller to retrieve the current configuration of the voting attention
tone.

Parameter structure for the function
The function has no additional parameters.

Response structure from the function
The function returns the following structure:

BYTE byAttentionTone;

where:

byAttentionTone Configured voting attention tone, which can be one of the

DCN Next Generation Open Interface Release 4.1 en | 139

Bosch Security Systems | 2013 March

following values:

• VT_C_ATTENTION_TONE_OFF

• VT_C_ATTENTION_TONE_1

• VT_C_ATTENTION_TONE_2

• VT_C_ATTENTION_TONE_3

Error codes returned
VT_E_NOERROR
VT_E_APP_NOT_STARTED

Related functions
VT_C_SET_ATTENTION_TONE
VT_C_START_ATTENTION_TONE

8.2.2.12 VT_C_SET_ATTENTION_TONE
Purpose
This function allows the remote controller to set the configuration of the voting attention tone.

Parameter structure for the function
The function requires the following structure as parameter:

BYTE byAttentionTone;

where:

byAttentionTone New value of the voting attention tone configuration, which can
be one of the following values:

• VT_C_ATTENTION_TONE_OFF

• VT_C_ATTENTION_TONE_1

• VT_C_ATTENTION_TONE_2

• VT_C_ATTENTION_TONE_3

Response structure from the function
The function has no response parameters.

Error codes returned
VT_E_NOERROR
VT_E_WRONG_PARAMETER
VT_E_APP_NOT_STARTED

Related functions
VT_C_GET_ATTENTION_TONE
VT_C_START_ATTENTION_TONE

8.2.2.13 VT_C_START_ATTENTION_TONE
Purpose
This function allows the remote controller to start the voting attention tone. The chime configured with
VT_C_SET_ATTENTION_TONE will be played.

Parameter structure for the function
The function has no additional parameters:

Response structure from the function
The function has no response parameters.

Error codes returned
VT_E_NOERROR
VT_E_APP_NOT_STARTED

DCN Next Generation Open Interface Release 4.1 en | 140

Bosch Security Systems | 2013 March

Related functions
VT_C_GET_ATTENTION_TONE
VT_C_SET_ATTENTION_TONE

8.3 Update Notifications

8.3.1 Introduction
This chapter describes the various update notifications send by the CCU. All the update notifications
of the VT application are listed in this chapter. A global description of notifications is described in
chapter 2 .

8.3.2 Notification item explanation
Each description consists of the following items:

• Purpose
A global description of the purpose of the notification.

• Notify structure with this update
The information passed with the update notification.

• Related functions
The related function in conjunction with the notification described.

8.3.2.1 Unit/User Event relations
The voting application controls on the CCU a voting round and passes the results back to the units,
the hall-display and to the remote controller (depending on the different settings made).

This section gives information about the events coming from the units and the processing done for
the events. In the table below an overview is made about the events and the actions performed.

Event Action performed
Cast a vote
Delegate/Chairman

The cast is stored in the voting application and the marker
“votes_changed” is set.

1 second timer tick
passed

The marker “votes_changed” is checked. When set the update
notification VT_C_RESULTSNOTIFY is sent to the remote
controller. Finally the marker is reset.

8.3.3 Voting notifications

8.3.3.1 VT_C_RESULTSNOTIFY
Purpose
Notify the remote controller with the total and individual results of the delegates who participate in the
current running voting. These results will be sent every 2 seconds by the DCN Next Generation
system if changes have been detected. Further it depends on parameters in the VT_C_START_APP
and VT_C_SET_VOTINGPARAMS functions. In the following table is described under which
circumstances this notification is sent:

Parameters Value
 VT_C_START_APP remote function
bResultNotify TRUE
 VT_C_SET_VOTINGPARAMS remote function
wInterimResultType VT_C_INT_RES_TOTAL,

VT_C_INT_RES_INDIV,
VT_C_INT_RES_TOTAL_PC_ONLY or
VT_C_INT_RES_INDIV_PC_ONLY

Note that of the ‘wInterimResultType’ setting the individual settings are only possible if also open-
voting is selected. When open-voting equals false, then only the totals will be sent to the Remote
Controller.

DCN Next Generation Open Interface Release 4.1 en | 141

Bosch Security Systems | 2013 March

Note also that if ‘bResultNotify’ is set to TRUE this notification is sent to the Remote Controller after a
hold or stop of the voting round.

Notify structure with this update
The update comes with the structure VT_T_RESULT_REC. The structure is defined in section
8.1.4.1
Note that only the totals are sent to the remote controller. This ‘wFillLevel’ parameter of the structure
(which holds the number of individual delegate information present in the ‘byDelegateVotes’ array)
holds the value zero, indicating that no individual results are present.

Related functions
VT_C_START_VOTING
VT_C_RESTART_VOTING

DCN Next Generation Open Interface Release 4.1 en | 142

Bosch Security Systems | 2013 March

9. ATTENDANCE REGISTRATION AND ACCESS CONTROL

9.1 Internal functioning of Attendance registration

9.1.1 Introduction
The Attendance Registration application is divided into three closely related parts:

a. Attendance registration
b. Access control
c. Delegate identification

In the following section an explanation is given about the three parts.

Note that if the attendance registration application is not active in the CCU, however the authority
settings as present in the delegate database are used to accept or reject actions of the delegates.
For example, when a delegate has no Voting authority, he will not be requested to cast his vote.
The authority settings are part of the delegate database, which should be downloaded using the
remote functions as described in chapter 4.

9.1.1.1 Attendance registration
Attendance registration is an application that allows the remote controller to keep track of the
delegates present in the system. To accomplish this the delegate must register himself present by
using one of the selectable options:

• Pressing his ‘Present key’ on his unit. (No leave option)
• Activating the external ‘present’ contact. (No leave option)
• Entering his PIN Code on his unit. (No leave option)
• Inserting his ID-card in his or any unit. To leave he withdraws the ID-card.
• Inserting his ID-card in the entrance-unit of the system. To leave he has to insert his ID-

card in the exit-unit of the system.

One of the above options is selectable for registration of a delegate.

Note 1: Activating the external ‘present’ contact will act the same as pressing the ‘Present key’.

Note 2: The use of the ID-card can, as an extra option, be combined with entering a pin-code.

Note 3: The ID-card insertion in a unit can be selected to be in his own unit only (fixed seating) or in
any unit of the system (free seating). In the latter situation the attendance application
connects the current seat to the delegate. The new seat-delegate combination is used within
the system.

The attendance registration application keeps track of the delegate, which enters the system
(become present) and leaves the system (become absent). The differences (if any) are reported to
the remote controller every second.

9.1.1.2 Access Control
Access Control keeps track of the delegate's accessibility for the applications Microphone
Management, Intercom and Voting as stored in the delegate database. Note that the content of the
delegate database is controlled by the remote functions available in the System Configuration
application. More information can be found in chapter 3.

A delegate can get control for an application (if he has access according to the authority settings in
the delegate database) using one of the following options:

• Entering his PIN Code on his unit.
• Inserting his ID-card in his or any unit.
• Inserting his ID-card in the entrance-unit to get access for his seat as stored in the

delegate database. Inserting the ID-card in the exit-unit disables the accessibility.

One of the above options is selectable for access control.

Note: The use of the ID-card can, as an extra option, be combined with entering a pin-code.

DCN Next Generation Open Interface Release 4.1 en | 143

Bosch Security Systems | 2013 March

The Access Control options are set in combination with the attendance registration options.

9.1.1.3 Delegate Identification
This functionality provides information about what delegate is seating on which unit. Delegate
Identification, i.e. location information, is available as a result of inserting ID Cards in and/or
withdrawing them from units. For this functionality neither the attendance registration nor the access
control process need to be active. The only restriction is that a names file should be downloaded.

When the location of a delegate is determined, the new location is sent to the remote controller. The
Delegate Identification functionality keeps track of the location where a delegate is located. The
differences (if any) are reported to the remote controller every second.

For Delegate Identification two definitions can be made:

• Located delegate a delegate, which resides on a unit.

• Dislocated delegate a delegate, which doesn’t reside on a unit yet.

A delegate who is assigned a seat in the current names file is using that seat, unless that delegate
inserts his card in another unit. In those cases the delegate is a located delegate. If another delegate
inserts his card in that particular unit, the delegate who resides default on that unit will become a
dislocated delegate.

When a delegate withdraws his card, the delegate will be assigned to his default unit if nobody else is
using that unit and the delegate who has withdrawn his card has no pending request to speak, else
he will become a dislocated delegate.

The delegate who is by default assigned to the unit from which the card was withdrawn will be
assigned to that unit again if the delegate itself is a dislocated delegate. If the delegate is a located
delegate, nobody will be assigned to that unit.

9.1.1.4 Combination Attendance and Access
From the previous sections it will be clear that the settings for attendance registration and access
control are combined, because the ways to register and to get access are the same for both parts of
the application.

Due to the combination of the settings of the two parts there are some restrictions:

• When the ‘Present key’ (or the external ‘present’ contact) is selected to gain attendance,
Access Control cannot be activated.

• When delegates may sit on any chair (Free seating), attendance registration using the
‘Present key’ (or the external ‘present’ contact) is not possible. Also registration and/or
Access Control using the PIN Code is not possible with this setting.

9.1.2 Functioning with parameters
When starting with the attendance application we must use parameters to set the different options.
According to the settings made, several events can occur with the DCN NG system, which influences
the presence and access of a delegate.

In this section we define the parameters and create a matrix that defines the changes when a certain
event within the system occurs.

9.1.2.1 State definitions
The state definitions define the current state of a delegate in the DCN NG system. There will be a
state definition per combination of the different settings. The following states are defined:

State item Value set
Presence Present or Absent
Location Located or Anywhere
Authorization Functioning or Blocked

Note 1: Presence is a delegate status identifying if a delegate is present or not.
Location is a delegate status, which reflects on which unit the delegate resides.
Authorization is a status identifying if a unit may be used or not by the delegate that currently
resides on this unit.

DCN Next Generation Open Interface Release 4.1 en | 144

Bosch Security Systems | 2013 March

Note 2: When a delegate is marked 'Functioning', the application authorization stored in the delegate
database controls whether access is allowed.

9.1.2.2 Events definitions
The event definitions shown in the table below are all the events that can influence the presence,
authorization or location of a delegate.

Event Explanation
Initial / Unit connected Initial state after activation of settings or state after unit

connection
Unit disconnected Unit disconnects
Present key Present key pressed on presence menu (or activating the

external present-contact)
PIN Code PIN Code is successfully entered using the soft-keys

This can either be:
• PIN Code entered after ID Card insertion (ID Card plus PIN

code control)
• PIN Code entered directly (PIN Code control)

Insert card in seat Insert Card in delegate/chairman unit, check if card is inserted
in the correct unit and if no other card with the same card code
is already present in another unit, check pin code if necessary

Remove card from seat Remove card from seat after successful "Insert card in seat"
Insert card in Entrance Insert Card in Entrance unit, check if card in no other unit,

check PIN Code if necessary
Insert card in Exit Insert Card in Exit unit, check if card in no other unit, check PIN

Code if necessary

9.1.2.3 Parameter definitions
Besides the ability to turn on and off the two parts of the attendance application the following
parameters are available for setting the options.

Parameter Explanation
SeatAttend Determine where the registration must take place. On the seat-

unit or on the entrance/exit units.
SeatAccess Determine if access is allowed on just one seat (as stored in the

names file) or on any seat. Seat access ‘None’ means that no
names file is currently opened.

ControlType Determine how the delegate must register himself to the system.
Possible options are: Present Key, Present Contact, PIN Code, ID
Card and ID Card plus PIN Code.

9.1.2.4 Event / state matrix

The table on the next page presents the event / state matrix for the different settings of the
parameters. ‘Present Contact’ will react the same as ‘Present Key’.

DCN Next Generation Open Interface Release 4.1 en | 145

Bosch Security Systems | 2013 March

Attendance Access Seat Attend Seat Access Control-Type Initial / Unit
connected

Unit
Disconnected

Present Key PIN Code Insert Card in
Seat

Remove Card
from Seat

Insert Card in
Entrance

Insert Card in
Exit

OFF OFF - - - Absent
Anywhere
Functioning

Absent
Anywhere
Blocked

 Absent
Located
Functioning

Absent
Anywhere
Functioning

 ON ENTRANCE
EXIT1

ONE_SEAT IDCARD
(_PINCODE)

Absent
Located
Blocked

Absent
Located
Blocked

 Absent
Located
Functioning

Absent
Anywhere
Blocked

 ANY_SEAT IDCARD
(_PINCODE)

Absent
Anywhere
Blocked

Absent
Anywhere
Blocked

 Absent
Located
Functioning

Absent
Anywhere
Blocked

 SEAT ONE_SEAT PIN CODE Absent
Located
Blocked

Absent
Located
Blocked

 Absent
Located
Functioning

Absent
Located
(No change)

Absent
Anywhere
(No change)

 IDCARD
(_PINCODE)

Absent
Located
Blocked

Absent
Located
Blocked

 Absent
Located
Functioning

Absent
Anywhere
Blocked

 ANY_SEAT IDCARD
(_PINCODE)

Absent
Anywhere
Blocked

Absent
Anywhere
Blocked

 Absent
Located
Functioning

Absent
Anywhere
Blocked

ON OFF ENTRANCE
EXIT

ONE_SEAT IDCARD
(_PINCODE)

Absent
Located
Functioning

(No change)
Located
Blocked

 (No change)
Located
Functioning

(No change)
Anywhere
Functioning

Present
Located
Functioning

Absent
Located
Functioning

 ANY_SEAT IDCARD
(_PINCODE)

Absent2
Anywhere
Functioning

(No change)
Anywhere
Blocked

 (No change)
Located
Functioning

(No change)
Anywhere
Functioning

Present
Anywhere
Functioning

Absent
Anywhere
Functioning

 SEAT NONE PRESENT-
KEY

Absent
Anywhere
Functioning

Absent
Anywhere
Blocked

Present
Anywhere
Functioning

 ONE_SEAT PRESENT-
KEY

Absent
Located
Functioning

Absent
Located
Blocked

Present
Located
Functioning

 (No change)
Located
Functioning

(No change)
Anywhere
Functioning

DCN Next Generation Open Interface Release 4.1 en | 146

Bosch Security Systems | 2013 March

Attendance Access Seat Attend Seat Access Control-Type Initial / Unit

connected
Unit
Disconnected

Present Key PIN Code Insert Card in
Seat

Remove Card
from Seat

Insert Card in
Entrance

Insert Card in
Exit

ON OFF SEAT ONE_SEAT PIN CODE Absent
Located
Functioning

Absent
Located
Blocked

 Present
Located
Functioning

(No change)
Located
Functioning

(No change)
Anywhere
Functioning

 IDCARD
(_PINCODE)

Absent
Located
Functioning

Absent
Located
Blocked

 Present
Located
Functioning

Absent
Anywhere
Functioning

 ANY_SEAT IDCARD
(_PINCODE)

Absent
Anywhere
Functioning

Absent
Anywhere
Blocked

 Present
Located
Functioning

Absent
Anywhere
Functioning

 ON ENTRANCE
EXIT

ONE_SEAT IDCARD
(_PINCODE)

Absent2
Located
Blocked

(No change)
Located
Blocked

 (No change)
Located
Functioning

(No change)
Anywhere
Functioning

Present
Located
Functioning

Absent
Located
Blocked

 ANY_SEAT IDCARD
(_PINCODE)

Absent2
Anywhere
Blocked

(No change)
Anywhere
Blocked

 (No change)3
Located3
Functioning3

(No change)
Anywhere
Blocked

Present
Anywhere
Blocked

Absent
Anywhere
Blocked

 SEAT ONE_SEAT PIN CODE Absent
Located
Blocked

Absent
Located
Blocked

 Present
Located
Functioning

(No change)
Located
Functioning

(No change)
Anywhere
Functioning

 IDCARD
(_PINCODE)

Absent
Located
Blocked

Absent
Located
Blocked

 Present
Located
Functioning

Absent
Located
Blocked

 ANY_SEAT IDCARD
(_PINCODE)

Absent
Anywhere
Blocked

Absent
Anywhere
Blocked

 Present
Located
Functioning

Absent
Anywhere
Blocked

The notes mentioned in the table are:

1. There are several rows showing the same states on the same events (e.g., Attendance Off, Access On and Seat Attend on Entrance-Exit units is
functional the same for both Seat Access on One-seat and Seat Access on Any-seat). Although it seems doubled information, all allowed combinations
are shown, amongst others to understand the changes in settings.

2. Initial State, No change at connection of the unit.
3. The delegate must be present to come to this state, otherwise no acceptation.

Combinations of settings that are not present in the table are not allowed.

DCN Next Generation Open Interface Release 4.1 en | 147

Bosch Security Systems | 2013 March

In case that no delegate database is downloaded into the CCU settings for ID-card or PIN Code are not possible. There is simply no information about which
delegate has which ID-card or PIN Code.

Therefore, when no delegate database is downloaded into the CCU, only one event / state combination is legal:
Attendance Access Seat Attend Seat Access Control-Type Initial / Unit

connected
Unit
Disconnected

Present Key PIN Code Insert Card in
Seat

Remove Card
from Seat

Insert Card in
Entrance

Insert Card in
Exit

ON OFF SEAT NONE PRESENT
KEY

Absent
Anywhere
Functioning

Absent
Anywhere
Blocked

Present
Anywhere
Functioning

Note that in this situation the activation of the present-key only registers the seat, because the system does not know which delegate should be seated on
that seat. Thus, in this specific situation no delegate/unit information will be sent to the remote controller. Only the total number of present reports is sent.

DCN Next Generation Open Interface Release 4.1 en | 148

Bosch Security Systems | 2013 March

9.2 Remote Functions

9.2.1 Introduction
This chapter describes the various remote functions needed to control the attendance
registration application inside the CCU. A global description of the remote function handling is
described in chapter 2.

The CCU can operate in multiple modes. The use of the AT remote function is restricted to the
“Congress Mode”. An overview of modes can be found in chapter 3.

9.2.1.1 Remote function item explanation
Each description consists of the following items:

• Purpose
A global description of the purpose of the function.

• Parameter structure for the function
The input parameters needed to fulfil the function. When the function requires no
parameters, no structure is described here.

• Response structure from the function
The output information coming from the function called. This information is only valid when
the ‘wError’ field of the received response information equals AT_E_NOERROR.

• Error codes returned
The error values returned in the ‘wError’ field of the response information. All possible error
codes are described in Appendix C Error Codes.

• Update notifications
The update notifications that are generated during the execution of the remote function.
When there are no notifications generated, then this part will be omitted.

• Related functions
The related function in conjunction with the function described. It refers to other remote
functions and to related update notifications.

9.2.2 Attendance/Access functions

9.2.2.1 AT_C_START_AT_APP
Purpose
Indicate the CCU that the remote controller wants to communicate with the AT application
inside the CCU. Depending on the control-type passed the remote controller gets the
opportunity to start attendance registration and/or access control. When no control is needed,
but the remote controller likes to know which delegates are present (i.e. for microphone
display information), the remote controller can monitor the presence changes from the CCU.

When you omit the execution of this remote function, all other remote functions have no effect
and will return an error.

Parameter structure for the function
The function requires the following structure as parameters.

typedef struct

{

 BYTE byRemoteControlType;

} AT_T_APPCONTROL;

where:

byRemoteControlType Identify what function the remote controller likes to perform in
combination with the attendance application. Valid values are:

• AT_C_APP_CONTROL The remote controller likes to have full
control over the attendance registration

DCN Next Generation Open Interface Release 4.1 en | 149

Bosch Security Systems | 2013 March

application. This full control implies the
right to change the attendance
registration settings.

• AT_C_APP_MONITOR The remote controller only wants to
monitor the presence changes. No
control of the settings is allowed.

Note that the second start of the application (without a stop) always results in an error. This
implies that you cannot change from ‘control’ to ‘monitor’ mode by calling the
AT_C_START_AT_APP again. You have to call the function AT_C_STOP_AT_APP first to
stop the previous mode.

Response structure from the function
The function has no response parameters.

Error codes returned
AT_E_NOERROR
AT_E_INCONTROL_OTHER_CHANNEL
AT_E_INCONTROL_THIS_CHANNEL
AT_E_INMONITOR_THIS_CHANNEL
AT_E_ILLEGAL_CONTROL_TYPE

Related functions
AT_C_STOP_AT_APP

9.2.2.2 AT_C_STOP_AT_APP
Purpose

Indicate the CCU that the remote controller no longer requires to communicate with the AT
application inside the CCU. When the remote controller which has the control ability stops the
communication, the CCU takes over the control for AT and turns attendance registration and
access control off if they were still on.

Note: Upon a communication lost this function will be activated, if AT_C_START_AT_APP
was activated.

Parameter structure for the function
The function has no additional parameters.

Response structure from the function
The function has no response parameters.

Error codes returned
AT_E_NOERROR
AT_E_APP_NOT_STARTED

Related functions
AT_C_START_AT_APP

9.2.2.3 AT_C_STORE_SETTING
Purpose
This function allows the remote controller to pass the new setting for attendance registration
and access control to the attendance registration application on the CCU. The attendance
registration application checks the validity of the parameters passed and stores the new
settings.

Note: This function may only be called if both attendance registration and access control are
off. See the AT_C_ACTIVATE function (§9.2.2.4).

Parameter structure for the function
The function requires the following structure as parameter:

typedef struct

{

 BYTE bySeatAttend;

 BYTE bySeatAccess;

DCN Next Generation Open Interface Release 4.1 en | 150

Bosch Security Systems | 2013 March

 BYTE byControlType;

} AT_T_SETTINGS;

where:

bySeatAttend Identify on which type of unit attendance registration will take
place. The setting is one of the following:

• AT_C_SEAT
• AT_C_ENTRANCE_EXIT

bySeatAccess Identify if a delegate can only use his own assigned unit or also
another unit. The setting is one of the following:

• AT_C_ANY_SEAT
• AT_C_ONE_SEAT

byControlType Identify how attendance registration and/or access control will
take place. The setting is one of the following:

• AT_C_PRESENTKEY
• AT_C_PRESENTCONTACT13
• AT_C_PINCODE
• AT_C_IDCARD
• AT_C_IDCARD_PINCODE

The meaning of the different parameter setting is described in §9.1.2.3.

Response structure from the function
The function has no response parameters.

Error codes returned
AT_E_NOERROR
AT_E_APP_NOT_STARTED
AT_E_STORE_SETTING_FAILED
AT_E_CHANGE_NOT_ALLOWED
AT_E_NOT_INCONTROL

Related functions
AT_C_ACTIVATE
AT_C_HANDLE_IDENTIFICATION

9.2.2.4 AT_C_ACTIVATE
purpose
This function allows the remote controller to start/stop attendance registration and/or access
control. As long as attendance registration and/or access control is on, the CCU will send
update notifications of type AT_C_SEND_TOTAL_REGISTRATION to the remote controller.
Update notifications are sent upon state changes due to actions from the delegates on the
units.

Parameter structure for the function
The function requires the following structure as parameter:

typedef struct

{

 BOOLEAN bAttendanceOn;

 BOOLEAN bAccessOn;

} AT_T_ACTIVATE;

where:

bAttendanceOn Indication if attendance registration must be on or off

bAccessOn Indication if access control must be on or off

13 Present contact can only be used when in SI the external contact is configured as present, see
SRS_SCSIINF.

DCN Next Generation Open Interface Release 4.1 en | 151

Bosch Security Systems | 2013 March

Response structure from the function
The function has no response parameters.

Error codes returned
AT_E_NOERROR
AT_E_APP_NOT_STARTED
AT_E_NOT_INCONTROL
AT_E_ACTIVATION_NOT_ALLOWED

Update notifications
AT_C_SEND_INDIV_REGISTRATION
AT_C_SEND_TOTAL_REGISTRATION

Related Functions
AT_C_STORE_SETTING
AT_C_HANDLE_IDENTIFICATION

9.2.2.5 AT_C_HANDLE_IDENTIFICATION
Purpose
This function allows the remote controller to do the registration with his own equipment. After
the local registration on the remote controller, he should pass the registered delegate to the
DCN NG system.

The registration from the remote controller emulates the insertion of the ID-card in the
entrance- or exit- unit. Therefore the ID-card code and (optional) the PIN-code must be
passed along with this function.

Note that both the ID-card-codes and the PIN-codes are downloaded from the remote
controller into the CCU during the download of the delegate database (see chapter 4 for
details).

Together with the registration of the delegates, at the unit, on which the delegate resides, all
LED’s will be turned on if the delegate becomes present. The LED’s are turned off again when
the delegate is registered absent.

Parameter structure for the function
The function requires the following structure as parameter:

typedef struct

{

 WORD wEvent;

 WORD wFillLevel;

 AT_T_DEL_IDENTIFICATION tDelIdenfication [AT_C_MAX_REGISTRATION];

} AT_T_IDENTIFICATION_REC;

where the AT_T_DEL_IDENTIFICATION is defined as:

typdef struct

{

 DWORD dwCardCode;

 WORD wPinCode;

} AT_T_DEL_IDENTIFICATION;

where:

wEvent Identify on which type of unit attendance registration will take
place. The setting is one of the following:

• ACSC_EVENT_INSERT_CARD_ENTRANCE
• ACSC_EVENT_INSERT_CARD_EXIT

wFillLevel Number of delegates in tDelIdentification (ranges from 1 to
AT_C_MAX_REGISTRATION). If more than
AT_C_MAX_REGISTRATION delegates should be registered this
function must be called more than once.

tDelIdentification [] Structure containing the delegate identification.

DCN Next Generation Open Interface Release 4.1 en | 152

Bosch Security Systems | 2013 March

dwCardCode ID-Card code of the delegate that should be
registered. Valid ID-card codes are in the range 1-
MAX_CARD_CODE (the ID-card code must be
unique for every delegate in the DCN NG system).

wPinCode PIN-code of the delegate hat should be registered.
The PIN-code is only used when the ‘Control-Type’ is
set to the value AT_C_IDCARD_PINCODE (see
§9.2.2.3)

Valid PIN-codes are in the range 111-55555, whereby
each digit must be in the range of 1-5. Set the field
wPinCode to 0 (zero) if PIN-codes are not used.
The number of digits to be used is also stored into the
delegate database. (PIN-codes do not have to be
unique.)

This function will handle the request only if the function AT_C_STORE_SETTINGS is called
before with the settings:

bySeatAttend AT_C_ENTRANCE_EXIT

bySeatAccess AT_C_ONE_SEAT

byControlType AT_C_IDCARD
or
AT_C_IDCARD_PINCODE

and the function AT_C_ACTIVATE is called before to activate either Attendance Registration
or Access Control or both.

Response structure from the function
The function has no response parameters.

Error codes returned
AT_E_NOERROR
AT_E_HANDLE_IDENTIFICATION_FAILED
AT_E_APP_NOT_STARTED
AT_E_SETTING_NOT_CORRECT
AT_E_NOT_INCONTROL
AT_E_ILLEGAL_EVENT
AT_E_ILLEGAL_ARRAY_SIZE

Update notifications
AT_C_SEND_INDIV_REGISTRATION
AT_C_SEND_TOTAL_REGISTRATION

Related functions
AT_C_STORE_SETTING
AT_C_ACTIVATE

9.2.2.6 AT_C_GET_INDIV_REGISTRATION
Purpose
This function allows the remote controller to retrieve the current registration status of each
individual delegate. The function is meant for remote controllers who called the function
AT_C_START_AT_APP with AT_C_APP_MONITOR as control type while attendance
registration and/or access control was already activated.

The function enables the remote controller to create his own start-up status of the delegate
registrations, which is to be used to handle the registration changes, send by the application
specific update notifications.

Parameter structure for the function
The function requires the following structure as parameter:

typedef struct

{

DCN Next Generation Open Interface Release 4.1 en | 153

Bosch Security Systems | 2013 March

 WORD wClusterIndex;

} AT_T_GET_REGISTRATION;

where:

wClusterIndex An index that indicates which cluster of delegate registration
information is to be retrieved. When wClusterIndex is 0 (zero),
the response structure contains the first cluster, with a
maximum of AT_C_MAX_DELEGATE, of delegate registration
information. When wClusterIndex is 1 (one), the second cluster
is returned etc.

Response structure from the function
The function returns the following structure:

typedef struct

{

 WORD wFillLevel;

 AT_T_DEL_ATTEND tDelegate[AT_C_MAX_DELEGATE];

} AT_T_REGISTER_INDIV;

where the AT_T_DEL_ATTEND is defined as:

typedef struct

{

 WORD wUnitId;

 WORD wDelegateId;

 BYTE byAttend;

} AT_T_DEL_ATTEND;

where:

wFillLevel Number of delegates in tDelegate (maximum of
AT_C_MAX_DELEGATE)

If wFillLevel is less than AT_C_MAX_DELEGATE, then the last
cluster with delegate registration information is returned.

tDelegate Structure containing the delegate information.

wUnitId Unit on which the delegate is located. The wUnitId
can be the value DBSC_EMPTY_UNIT when the
delegate is not located anywhere.

wDelegateId Delegate for which the presence status is given.

byAttend Presence status of the delegate. The setting is one
of the following:

• AT_C_NOSTATUS
• AT_C_ATTEND
• AT_C_LEAVE
• AT_C_ATTEND_NOCHANGE
• AT_C_LEAVE_NOCHANGE

How the presence status is determined can be seen in the following status diagram:

DCN Next Generation Open Interface Release 4.1 en | 154

Bosch Security Systems | 2013 March

Internally it is possible that a delegate, which is already present, will be registered present
again. In this case he inserts his ID-card in another unit, which implies that the delegate
changed seat. This seat change is also reported to the remote controller using this update
notification. His status will then be changed to AT_C_ATTEND_NOCHANGE to inform that
the ‘presence’ has not changed. The same situation can occur when the delegate has already
left the system.

Error codes returned
AT_E_NOERROR
AT_E_APP_NOT_STARTED

Update notifications
AT_C_SEND_INDIV_REGISTRATION
AT_C_SEND_TOTAL_REGISTRATION

Related functions
AT_C_START_AT_APP

9.3 Update Notifications

9.3.1 Introduction
This chapter describes the various update notifications send by the CCU. All the update
notifications of the AT application are listed in this chapter. A global description of notifications
is made in chapter 2.

9.3.1.1 Preconditions
The update notifications coming from the AT application use the UnitId and DelegateId to
connect each other. The valid UnitId’s in the DCN NG system can be queried and the
DelegateId’s can be set using remote functions described in chapter 4.

9.3.1.2 Notification item explanation
Each description consists of the following items:

• Purpose
A global description of the purpose of the notification.

• Notify structure with this update
The information passed with the update notification.

• Related functions
The related function in conjunction with the notification described.

AT_C_NOSTATUS

AT_C_ATTEND

AT_C_LEAVE

AT_C_ATTEND_NOCHANGE

AT_C_LEAVE_NOCHANGE

Start attendance
registration

Register
Delegate

Deregister
Delegate

Register
Delegate

Register
Delegate

Register
Delegate

Register
Delegate

Deregister
Delegate

Deregister
Delegate

Deregister
Delegate

Deregister
Delegate

Figure 4 Presence status changes diagram

DCN Next Generation Open Interface Release 4.1 en | 155

Bosch Security Systems | 2013 March

9.3.2 Attendance Registration and Access Control notifications

9.3.2.1 AT_C_SEND_INDIV_REGISTRATION
Purpose
Notify the remote controller the individual status of the delegates, which (de)registers
themselves. The presence and location results will be sent every second if changes have
been detected on the CCU. Also the initial state (directly after activation) is sent to the remote
controller using this notification. The notification is sent to every controller who started the
attendance registration application with AT_C_START_AT_APP before.

Notify structure with this update
The update comes with the same structure as used for the response of the remote function
AT_C_GET_INDIV_REGISTRATION (section 9.2.2.6).

Note that only the changes are sent to the remote controller.

Related functions
AT_C_STORE_SETTING
AT_C_ACTIVATE
AT_C_HANDLE_IDENTIFICATION

9.3.2.2 AT_C_SEND_TOTAL_REGISTRATION
Purpose
Notify the remote controller the total number of present and absent delegates. This
information will be sent every second by the CCU if changes have been detected on the CCU.
Also the initial totals (directly after activation) are sent to the remote controller using this
notification.

These results will only be sent if attendance registration is activated.

Notify structure with this update
The update comes with the following structure:

typedef struct

{

 WORD wAttend;

 WORD wLeave;

} AT_T_REGISTER_TOTAL;

where:

wAttend Number of delegates who have registered themselves present.

wLeave Number of delegates who are known in the delegate database
and who are not registered yet.

Related functions
AT_C_STORE_SETTING
AT_C_ACTIVATE
AT_C_HANDLE_IDENTIFICATION

DCN Next Generation Open Interface Release 4.1 en | 156

Bosch Security Systems | 2013 March

10. TEXT & STATUS DISPLAY FOR A REMOTE INTERFACE

10.1 Introduction
The Text & Status Display Remote Interface is part of the DCN Next Generation software that
allows for another controlling entity outside the CCU, not being the DCN Next Generation
Control PC, to use the Text & Status Display application.

10.1.1 Remote Text & Status Display Control
Text & Status Display is the application that provides a means of displaying conference-related
information on character displays located in the conference venue. Typical configuration issues
are e.g.: storing display settings, clearing displays etc. More details on the complete LD
application can be found in the user manual [USERDOC_LD].

Configuring Text & Status Display with a remote interface is achieved by means of calling a
defined set of Remote Functions and acting upon a defined set of Update Notifications. The
general concept of Remote Functions and Update Notifications is described in chapter 2. This
chapter also describes the protocol and hardware conditions concerning the remote interface.

Together with this remote interface, there are at the moment two locations in a fully connected
CCU where LD can be influenced. These locations are:

• A remote controller (which can be the control PC) connected using an Ethernet (in case of
MCCU) or RS-232 (in case of SCCU) connection. This remote controller uses Remote
Function calls to configure Text & Status Display.

• Updates in applications for which LD displays text and/or status (MM, VT and MD) may
lead to updates in text/status displays and/or update notifications (depending on the
configuration)

To get a fully operational system the remote controller must register itself to the CCU, in order
for it to receive update messages from the CCU.

Remote functions coming from the remote controller can indirectly initiate an update in the
CCU. During the update, notifications are generated and sent to the remote controller.

Unit and user events causing changes in applications MM, VT and MD can lead to LD update
notifications in the CCU. Depending on the configuration of LD, update notifications may be
sent to the remote controller.

During the processing of remote functions on the CCU, update messages may be created and
transmitted. This implies that the response information of a remote function can be received
after the reception of an update notification. The remote controller must wait for the response
of the remote function. After reception of the response appropriate action should be taken
upon the error code returned. The notifications received during the wait for the response may
be processed directly. See chapter 2 for details on this mechanism.

This document gives the set of Remote Functions and the set of Update Notifications
concerning Text & Status Display. The (indirect) relation between Remote Function, sent by
the remote controller, and Update Notifications is given in the description of each separate
Remote Function. The (indirect) relation between unit events and Update Notifications (and
the configuration needed to enable these updates) is given in section 6.3.1.2.

10.2 Remote Functions

10.2.1 Introduction
This chapter describes the remote functions used to configure the Text & Status Display
application on the CCU.

10.2.1.1 Remote function item explanation
Each description consists of the following items:

DCN Next Generation Open Interface Release 4.1 en | 157

Bosch Security Systems | 2013 March

• Purpose
A global description of the purpose of the function.

• Parameter structure for the function
The input parameters needed to fulfill the function. When the function requires no
parameters, no structure is described here. The type definitions of the basic types used to
build up the input parameter structure are given in chapter 2.

• Response structure from the function
The output information coming from the function called. This information is only valid when
the ‘wError’ field of the received response information equals LD_E_NOERROR.

• Error codes returned
The possible error values returned in the ‘wError’ field of the response information for this
remote function. All different error codes are described in Appendix C Error Codes.

• Update notifications
The update notifications that are generated during the execution of the remote function.
When there are no notifications generated, this part will be omitted.

• Related functions
The related function in conjunction with the function described. It refers to other remote
functions and to related update notifications. When there are no related functions, this part
will be omitted.

10.2.2 LD General functions

10.2.2.1 LD_C_START_LD_APP

Purpose
This function indicates the CCU that the remote controller wants to communicate with the LD
application inside the CCU. It is now impossible for another remote controller (e.g. DCNNG
Control PC) to gain control of the application. After this function has been called, the remote
controller will receive update notifications from the LD application (see section 6.3.1.2).

When the execution of this function is omitted, all other remote functions will have no effect
and will return an error code (LD_E_APP_NOT_STARTED).

Parameter structure for the function
The function has no additional parameters.

Response structure from the function
The function has no response parameters

Error codes returned
LD_E_NOERROR
LD_E_INCONTROL_OTHER_CHANNEL
LD_E_INCONTROL_THIS_CHANNEL

Related functions
LD_C_STOP_LD_APP

10.2.2.2 LD_C_STOP_LD_APP
Purpose
Indicate the CCU that the remote controller no longer requires to communicate with the LD
application inside the CCU. After receiving this function the CCU takes over the control of LD.
The remote controller will no longer receive update notifications.

Parameter structure for the function
The function has no additional parameters.

Response structure from the function
The function has no response parameters.

DCN Next Generation Open Interface Release 4.1 en | 158

Bosch Security Systems | 2013 March

Error codes returned
LD_E_NOERROR
LD_E_APP_NOT_STARTED

Related functions
LD_C_START_LD_APP

10.2.2.3 LD_C_STORE_DISPLAY_SETTING
Purpose
This function stores the settings of a display. If the settings concern an alphanumerical
display, the update notification LD_C_SEND_ANUM_DATA may be sent (depending on the
settings).

Parameter structure for the function
The function requires the following structure as parameter:

typedef struct

{

 WORD wDisplayId;

 WORD wFlags;

 WORD wNrOfSpeakerLines;

 WORD wNrOfRequestLines;

 DWORD dwReserved;

} LD_T_DISPLAY_REC;

where:

wDisplayId Identifies the display for which the settings are sent. This can be
one of the following (see [USERDOC_LD] for details):

• LD_C_DISPLAY_ONE
The first display, which is a numerical display

• LD_C_DISPLAY_TWO
The second display, which is an alphanumerical display

• LD_C_DISPLAY_THREE
The third display, which is an alphanumerical display

• LD_C_DISPLAY_FOUR
The fourth display, which is a graphical display

The error LD_E_UNKNOWN_DISPLAY is returned if wDisplayId
is not within the specified range.

wFlags Bit mask indicating which application(s) must be enabled for the
display. If an application is enabled, changes in the application
can lead to updates on the display (see [USERDOC_LD]). A
change in enabled applications for an alphanumerical display
may lead to an update notification. The bit mask can consist of
(a combination of) the following flags:

• LD_C_VT_FLAG_DISPLAY
The VT application is enabled for the display

• LD_C_MM_FLAG_DISPLAY
The MM application is enabled for the display

• LD_C_MD_FLAG_DISPLAY
The MD application is enabled for the display

wNrOfSpeakerLines Indicates how many lines of the display are used to show the
speaker list. If this value is changed for an alphanumerical
display, an update notification may be generated. This
parameter may range from 0-
LD_C_MAX_NR_OF_DISPLAY_LINES. If it is out of this range,
the error LD_E_WRONG_PARAMETER is returned. Note that

DCN Next Generation Open Interface Release 4.1 en | 159

Bosch Security Systems | 2013 March

the added value of wNrOfSpeakerLines and
wNrOfRequestLines may not exceed
LD_C_MAX_NUMBER_OF_DISPLAY_LINES. The error
LD_E_LINES_OVERFLOW is returned if this is detected.

wNrOfRequestLines Indicates how many lines of the display are used to show the
request-to-speak list. If this value is changed for an
alphanumerical display, an update notification will be generated.
This parameter may range from 0-
LD_C_MAX_NUMBER_OF_DISPLAY_LINES. If it is out of this
range, the error LD_E_WRONG_PARAMETER is returned.
Note that the added value of wNrOfSpeakerLines and
wNrOfRequestLines may not exceed
LD_C_MAX_NUMBER_OF_DISPLAY_LINES. The error
LD_E_LINES_OVERFLOW is returned if this is detected.

dwReserved Reserved for (possible) future extensions. Ignored at the
moment, may have any value.

Response structure from the function
The function has no response parameters

Error codes returned
LD_E_NOERROR
LD_E_APP_NOT_STARTED
LD_E_UNKNOWN_DISPLAY
LD_E_WRONG_PARAMETER
LD_E_LINES_OVERFLOW

Update notifications
LD_C_SEND_ANUM_DATA

10.2.2.4 LD_C_CLEAR_DISPLAY_NR
Purpose
This function clears the current request from the specified display. If another request is
available (in the CCU) it will automatically be shown. If the specified display is an
alphanumerical display, the update notification LD_C_SEND_ANUM_DATA may be sent.

Parameter structure for the function
The function requires the following structure as parameter:

WORD wDisplayId;

where:

wDisplayId Identifies the display for which the current request is cleared.
This can be one of the following (see [USERDOC_LD] for
details):

• LD_C_DISPLAY_ONE
The first display, which is a numerical display

• LD_C_DISPLAY_TWO
The second display, which is an alphanumerical display

• LD_C_DISPLAY_THREE
The third display, which is an alphanumerical display

• LD_C_DISPLAY_FOUR
The fourth display, which is a graphical display

The error LD_E_UNKNOWN_DISPLAY is returned if
wDisplayId is not within the specified range.

DCN Next Generation Open Interface Release 4.1 en | 160

Bosch Security Systems | 2013 March

Response structure from the function
The function has no response parameters.

Error codes returned
LD_E_NOERROR
LD_E_APP_NOT_STARTED
LD_E_UNKNOWN_DISPLAY

Update notifications
LD_C_SEND_ANUM_DATA

10.3 Update Notifications

10.3.1 Introduction
This chapter describes the various update notifications sent by the CCU. All the update
notifications of the LD application are listed in this chapter.

10.3.1.1 Update notification item explanation
Each update notification description consists of the following items:

• Purpose
A global description of the purpose of the notification.

• Notify structure with this update
The information passed with the update notification.

DCN Next Generation Open Interface Release 4.1 en | 161

Bosch Security Systems | 2013 March

10.3.1.2 Unit/user event relations
As mentioned in section 5.1.1, update notifications may not only be the result of remote
functions generated by the remote controller, but can also be the result of unit/user events. It
was also mentioned in section 5.1.1 that the relation between the unit/user events and the
update notifications is indirect (i.e. asynchronous).

This section gives information about the situations which will lead to the update notification
LD_C_SEND_ANUM_DATA. The situations for all applications that can be enabled are
explained. Note that the notifications are only generated for the alphanumerical displays (i.e.
LD_C_DISPLAY_TWO and LD_C_DISPLAY_THREE), and they are only generated if the
application is enabled for the display (see 10.2.2.3).

MM application

The LD update notification may be sent when:

• The speaker list changes

• The request-to-speak list changes

MD application

The LD notification may be sent when:

• A message is sent to hall displays

• A message is cleared from hall displays

VT application

The LD notification may be sent when:

• A voting session is started

• During a voting, a vote is cast (or changed)

• A voting session is stopped

DCN Next Generation Open Interface Release 4.1 en | 162

Bosch Security Systems | 2013 March

10.3.2 LD General notifications

10.3.2.1 LD_C_SEND_ANUM_DATA
Purpose
This notification sends the current (updated) contents of a display to the remote controller.

Notify structure with this update
The update comes with the following structure:

typedef struct

{

 WORD wDisplayId;

 CHAR szData[DCNC_MAX_DISPLAYDATA_SIZE];

 WORD wNumOfChars;

} LD_T_DISPLAY_DATA;

where:

wDisplayId Identifies the display for which the settings are sent. This can be
one of the following:

• LD_C_DISPLAY_TWO
The second display, which is an alphanumerical display

• LD_C_DISPLAY_THREE
The third display, which is an alphanumerical display

szData The current (updated) text on the display.

wNumOfChars The size of the current text on the display (in characters). The
text in szData therefore is found in szData[0]-
szData[wNumOfChars-1]. This parameter can have value 0-
DCNC_MAX_DISPLAYDATA_SIZE.

DCN Next Generation Open Interface Release 4.1 en | 163

Bosch Security Systems | 2013 March

11. MESSAGE DISTRIBUTION FOR A REMOTE INTERFACE

11.1 Introduction
The Message Distribution Remote Interface is part of the DCN software which allows for
another controlling entity outside the CCU, not being the DCN Control PC, to use the Message
Distribution application.

11.1.1 Remote Message Distribution Control
The Message Distribution application provides a means of generating and distributing text
messages in a DCN environment.

The message can be distributed to the following destinations:

• Delegates

• Interpreters

• Conference hall displays

The user can specify exactly which delegates or interpreters the message has to be
distributed to. If the message has to be distributed to more than one destination, for example
delegates and interpreters, it is sent to each destination in turn. More details on the complete
MD application can be found in the user manual [USERDOC_MD].

Using MD with a remote interface is achieved by means of calling a defined set of Remote
Functions. The general concept of Remote Functions is described in chapter 2. This chapter
also describes the protocol and hardware conditions concerning the remote interface.

Together with this remote interface, there are up to two locations in a full-connected CCU
where MD can be influenced. These locations are:

• A remote controller (which can be the control PC) connected using an Ethernet (in case of
MCCU) or RS-232 (in case of SCCU) connection. This remote controller uses Remote
Function calls to configure Message Distribution.

• Delegate units on which the auxiliary button is pressed, or interpreter desks on which the
help or speak slowly key is pressed.

To get a fully operational system the remote controller must register itself to the CCU, in order
for it to receive update messages from the CCU.

The remote controller must wait for the response of the remote function. After reception of the
response appropriate action should be taken upon the error code returned.

Events coming from a unit (delegate or interpreter) are processed and the CCU is updated.
Some of the events lead to update notifications. The notifications are sent on by the CCU to
the remote controller.

This document gives the set of MD Remote Functions and the set of Update Notifications
concerning Message Distribution. The relation between unit events and Update Notifications is
given in section 11.3.1.2.

11.2 Remote Functions

11.2.1 Introduction
This chapter describes the various remote functions needed to use the Message Distribution
functionality of the system.

11.2.1.1 Remote function item explanation
Each description consists of the following items:

• Purpose
A global description of the purpose of the function.

DCN Next Generation Open Interface Release 4.1 en | 164

Bosch Security Systems | 2013 March

• Parameter structure for the function
The input parameters needed to fulfil the function. When the function requires no
parameters, no structure is described here. The type definitions of the basic types used to
build up the input parameter structure are given in chapter 2.

• Response structure from the function
The output information coming from the function called. This information is only valid when
the ‘wError’ field of the received response information equals MD_E_NOERROR.

• Error codes returned
The possible error values returned in the ‘wError’ field of the response information for this
remote function. All different error codes are described in Appendix C Error Codes.

• Update notifications
The update notifications, which are generated during the execution of the remote function.
When there are no notifications generated, this part will be omitted.

• Related functions
The related function in conjunction with the function described. It refers to other remote
functions and to related update notifications. When there are no related functions, this part
will be omitted.

11.2.2 Message Distribution functions

11.2.2.1 MD_C_START_MON_MD
Purpose
Function to start the monitoring behavior of the Message Distribution application. This function
must be called by the remote controller in order to receive update notifications.

Parameter structure for the function
The function has no additional parameters.

Response structure from the function
The function returns the following structure:

WORD wNrOfInstances;

where:

wNrOfInstances The value of the update use count for the MD application at the
end of the function handling. It contains the number of times a
remote controller has connected over the same communication
medium. E.g. the first time the MD_C_START_MON_MD
function is called, it contains the value 1.

Error codes returned
MD_E_NOERROR

Related functions
MD_C_STOP_MON_MD

11.2.2.2 MD_C_STOP_MON_MD
Purpose
Function to stop monitoring the behavior of the Message Distribution application. Update
notifications will no longer be sent to the remote controller.

Parameter structure for the function
The function has no additional parameters.

Response structure from the function
The function returns the following structure:

WORD wNrOfInstances;

DCN Next Generation Open Interface Release 4.1 en | 165

Bosch Security Systems | 2013 March

where:

wNrOfInstances The value of the update use count for the MD application at the
end of the function handling. It contains the number of times a
remote controller is connected over the same communication
medium. E.g. when there is only one connection registered for
the MD application prior to calling the MD_C_STOP_MON_MD
function, the value of wNrOfInstances will be 0 when the
function returns.

Error codes returned
MD_E_NOERROR

Related functions
MD_C_START_MON_MD

11.2.2.3 MD_C_SEND_MESSAGE_TO_UNITS
Purpose
This function sends the message prepared on the Remote Controller to the specified list of
units.

Parameter structure for the function
The function has the following parameters:

typedef struct

{

 DCNC_LCD_TEXT_BLOCK tText;

 WORD wRcvType;

 WORD wDuration;

 WORD wNumOfUnits;

 WORD wUnitList[DBSC_MAX_ACT_UNIT];

} MD_T_SEND_MESS;

where:

tText The message to be sent. NOTE: The fifth line is a terminating
line and will not be displayed.

wRcvType The type of units for which the message is meant. This can be
one of:

• MD_C_RCV_DELEGATE: The message is meant for
delegate units with LCD and softkeys. The message is sent
to units of this type that are present in wUnitList. The
message will not be displayed immediately.

• MD_C_RCV_INTERPRETER: The message is meant for
interpreter desks. The message will be sent to interpreter
desks present in wUnitList and it will not be displayed
immediately.

• MD_C_RCV_HALL: The message is meant for and will only
be sent to hall displays.

wDuration Only for Hall displays: The number of seconds the message
should be displayed, 0 to display permanently. This parameter
is ignored if wRcvType is not equal to MD_C_RCV_HALL..

wNumOfUnits The number of units present in wUnitList.

wUnitList A list of unitIds that identifies which units should receive the
message. Note that the units must be of type specified in
wRcvType. If wRcvType has value MD_C_RCV_HALL,
wUnitList and wNumOfUnits are ignored.

DCN Next Generation Open Interface Release 4.1 en | 166

Bosch Security Systems | 2013 March

Response structure from the function
The function has no response parameters.

Error codes returned
MD_E_NOERROR
MD_E_NO_MORE_MESSAGES_ALLOWED

11.2.2.4 MD_C_CLEAR_MESSAGE_ON_UNITS
Purpose
This function clears all the messages on the units of the specified type.

Parameter structure for the function
The function has the following parameter:

WORD wRcvType;

where:

wRcvType The type of units for which the messages should be cleared.
This can be one of:

• MD_C_RCV_DELEGATE

• MD_C_RCV_INTERPRETER

• MD_C_RCV_HALL

Response structure from the function
The function has no response parameters.

Error codes returned
MD_E_NOERROR

11.2.2.5 MD_C_AUX_LED_CONTROL
Purpose
This function is used to switch one or more LEDs of a delegate unit on or off. This can be
used to acknowledge the press/release of the auxiliary button to the user of the delegate unit.
Note that this function only influences the LEDs around the auxiliary button of a unit. The
LEDs around the microphone button are not affected by this function. If this function is called
for a unit that does not have an auxiliary button, the error MD_E_NO_AUX_BUTTON is
returned.

Parameter structure for the function
The function has the following parameters:

typedef struct

{

 WORD wUnitId;

 BYTE byLedMask;

} MD_T_AUX_LED_CTL;

where:

wUnitId Unit Identifier of the unit for which the LED states must be
updated. Unit identifiers can be retrieved from the system using
the remote functions for System Config chapter 3. If the unit
corresponding to the unit identifier does not have an auxiliary
button, the error MD_E_NO_AUX_BUTTON is returned.

byLedMask Bit mask identifying the state of the three delegate unit LEDs.
The LEDs are defined as following:

• MD_C_IN_NOTEBOOK_LED
The notebook LED, a lighted amber LED-ring.

DCN Next Generation Open Interface Release 4.1 en | 167

Bosch Security Systems | 2013 March

• MD_C_MICRO_LED
The microphone LED, a lighted red LED-ring

• MD_C_RTS_LED
The request to speak LED, a lighted green LED-ring.

If the bit corresponding to a LED is present in the bit mask, the
LED state must be ‘on’. If it is not present, the LED state must
be ‘off’. E.g. if the notebook and rts LED need to be on, the bit
mask (MD_C_RTSLED | MD_C_IN_NOTEBOOK_LED) must
be sent. If all LEDs must be turned off, the following define can
be used:

• MD_C_ALL_LEDS_OFF

Response structure from the function
The function has no response parameters.

Error codes returned
MD_E_NOERROR
MD_E_NO_AUX_BUTTON

Related functions
MD_C_REQ_BUTTON_ON_OFF

11.3 Update Notifications

11.3.1 Introduction
This chapter describes the various update notifications sent by the CCU. All the update
notifications of the MD application are listed in this chapter.

11.3.1.1 Update notification item explanation
Each update notification description consists of the following items:

• Purpose
A global description of the purpose of the notification.

• Notify structure with this update
The information passed with the update notification.

11.3.1.2 Unit/user event relations
As mentioned in section 5.1.1, update notifications can be the result of unit/user events.

This section gives information about the events coming from a unit and the processing done
for the events. In the table below an overview is made about the events and the actions
performed.

Event MD_C_REQ_BUTTON_ON_OFF
Press (and hold) auxiliary button (Delegate
unit)

X

Release auxiliary button (Delegate unit) X

Press (and hold) speak slowly button
(interpreter desk)

X

Release speak slowly button (interpreter desk) X

Press (and hold) help button (interpreter desk) X

Release help button (interpreter desk) X

Close external present contact (Delegate unit
with external present contact)

X

DCN Next Generation Open Interface Release 4.1 en | 168

Bosch Security Systems | 2013 March

Event MD_C_REQ_BUTTON_ON_OFF
Open external present contact (Delegate unit
with external present contact)

X

11.3.2 MD General Notifications

11.3.2.1 MD_C_REQ_BUTTON_ON_OFF
Purpose
This notification informs the remote controller that a request button on a unit is pressed (and
held) or released. The notification specifies which button on which unit is pressed or released.
Note that the function is also used for the external present contact. In this case no buttons is
pressed, but the contact is closed. The closing and opening of the contact can be performed
by means of a button though (if a button is connected to the external present contact).

Notify structure with this update
The update comes with the following structure:

typedef struct

{

 WORD wUnitId;

 BYTE byButtonType;

 BOOLEAN bOn;

} MD_T_REQ_BUTTON_ON_OFF;

where:

wUnitId Unit Identifier of the unit on which the request button was
pressed. Unit identifiers can be retrieved from the system using
the remote functions for System Config chapter 3.

byButtonType Identifies which button was pressed on the unit. This can be one
of the following types:

• MD_C_AUXILIARY_BUTTON
The auxiliary button was pressed. This implies that the unit
(identified by wUnitId) is a delegate unit.

• MD_C_SPEAKSLOWLY_BUTTON
The speak slowly button was pressed. This implies that the
unit (identified by wUnitId) is an interpreter desk.

• MD_C_HELP_BUTTON
The help button was pressed. This implies that the unit
(identified by wUnitId) is an interpreter desk.

• MD_C_EXTERNAL_PRESENT_CONTACT
The external present contact was closed/opened. This
implies that the unit (identified by wUnitId) is a delegate unit
with an external present contact.

bOn TRUE: The button is pressed (and held), or the contact is
closed
FALSE: The button is released, or the contact is opened

DCN Next Generation Open Interface Release 4.1 en | 169

Bosch Security Systems | 2013 March

12. INTERCOM FOR A REMOTE INTERFACE

12.1 Introduction
The Intercom Remote Interface is part of the DCN NG software, which allows for another
controlling entity outside the CCU, not being the DCN NG Control PC, to use the Intercom
application.

12.1.1 Remote Intercom Control
Intercom is the application that allows for controlling intercom calls between delegates,
chairmen and interpreters during a conference. It allows several types of calls to be made:

• From participant to operator, or vice versa

• Between participants, via the operator or directly

• From interpreter to operator, or vice versa

• Between interpreters, via the operator or directly

• From participant to interpreter, or vice versa, via the operator or directly.

More details on the complete IC application can be found in the user manual [USERDOC_IC].

Setting up and controlling intercom calls with a remote interface is by means of calling a
defined set of Remote Functions and acting upon a defined set of Update Notifications. The
general concept of Remote Functions and Update Notifications is described in chapter 2. This
chapter also describes the protocol and hardware conditions concerning the remote interface.

Together with this remote interface, there are up to three locations in a full-connected CCU
where IC can be influenced. These locations are:

• The remote interface or remote controller using the RS-232 interface. The remote
controller makes Remote Function calls for Intercom.

• The actual units that handle their intercom handset.

• The interpreter units that handle their intercom- or chairman-call button.

It is not possible to receive update notifications on both the remote controller and the DCN NG
Control PC.

During the processing of remote functions on the CCU, the update messages are created and
transmitted. This implies that the response information of a remote function can be received
after the reception of an update notification. The remote controller must wait for the response
of the remote function. After reception of the response appropriate action should be taken
upon the error code returned. The notifications received during the wait for the response may
be processed directly.

This document gives the set of Remote Functions and the set of Update Notifications
concerning Intercom. The relation between Remote Function, sent by the remote controller,
and Update Notifications is given in the description of each separate Remote Function. The
relation between unit events and Update Notifications is given in section 5.3.1.2.

12.2 Remote Functions

12.2.1 Introduction
This chapter describes the various remote functions needed to use the intercom functionality
of the system.

12.2.1.1 Remote function item explanation
Each description consists of the following items:

DCN Next Generation Open Interface Release 4.1 en | 170

Bosch Security Systems | 2013 March

• Purpose
A global description of the purpose of the function.

• Parameter structure for the function
The input parameters needed to fulfil the function. When the function requires no
parameters, no structure is described here. The type definitions of the basic types used to
build up the input parameter structure are given in chapter 2.

• Response structure from the function
The output information coming from the function called. This information is only valid when
the ‘wError’ field of the received response information equals IC_E_NOERROR.

• Error codes returned
The possible error values returned in the ‘wError’ field of the response information for this
remote function. All different error codes are described in Appendix C Error Codes.

• Update notifications
The update notifications, which are generated during the execution of the remote function.
When there are no notifications generated, then this part will be omitted.

• Related functions
The related function in conjunction with the function described. It refers to other remote
functions and to related update notifications.

12.2.2 Intercom functions

12.2.2.1 IC_C_START_IC_APP
Purpose
Indicates the CCU that the remote controller wants update notifications from the IC application
inside the CCU. Update notifications are sent upon state changes due to actions from all
intercom actions on the units.

When you omit the execution of this remote function, you can still execute remote functions,
but no update notifications will be sent to the remote controller.

Parameter structure for the function
The function has no additional parameters.

Response structure from the function
The function has no response parameters.

Error codes returned
IC_E_NOERROR
IC_E_NO_OPERATOR
IC_E_INCONTROL_THIS_CHANNEL
IC_E_INCONTROL_OTHER_CHANNEL
IC_E_NO_AUDIO_CHANNELS

Update notifications
IC_UPD_AVAILABLE_LINES
IC_UPD_OPERATOR_STATE

Related functions
IC_C_CLOSE_IC_APP

12.2.2.2 IC_C_CLOSE_IC_APP
Purpose

Indicates the CCU that the remote controller no longer requires updates from the IC applica-
tion inside the CCU.

Parameter structure for the function
The function has no additional parameters.

Response structure from the function

DCN Next Generation Open Interface Release 4.1 en | 171

Bosch Security Systems | 2013 March

The function has no response parameters.

Error codes returned
IC_E_NOERROR

Related functions
IC_C_START_IC_APP

12.2.2.3 IC_C_SET_LINKS
Purpose
This function allows the remote controller to set special links.

Parameter structure for the function
The function requires the following structure as parameter:

typedef struct

{

 IC_T_LINKINFO_LIST tList[IC_MAX_LINKS_IN_RFC];

} IC_T_LINKINFO_LIST;

with:

typedef struct

{

 UNITID wSourceId;

 UNITID wDestId;

} IC_T_LINKINFO_STRUCT;

where:

wSourceId The unitId of the initiator of the intercom call. If the wSourceId is
IC_C_UNASSIGNED_UNIT, then this is the last link in the list.

wDestId The unitId of the receiver of the intercom call

Response structure from the function
The function has no response parameters.

Error codes returned
IC_E_NOERROR
IC_E_WRONG_PARAMETER

12.2.2.4 IC_C_CLEAR_ LINKS
Purpose
This function allows the remote controller to remove all the existing special links between
units.

Parameter structure for the function
The function has no additional parameters.

Response structure from the function
The function has no response parameters.

Error codes returned
IC_E_NOERROR

12.3 Update Notifications

12.3.1 Introduction
This chapter describes the various update notifications sent by the CCU. All the update
notifications of the IC application are listed in this chapter.

12.3.1.1 Update notification item explanation
Each update notification description consists of the following items:

DCN Next Generation Open Interface Release 4.1 en | 172

Bosch Security Systems | 2013 March

• Purpose
 A global description of the purpose of the notification.

• Notify structure with this update
 The information passed with the update notification.

12.3.1.2 Unit/user event relations
This section gives information about the events coming from the units and the processing
done for the events. In the table below and overview is made about the events and the actions
performed.

Event Action performed
Pick up the hook on a
unit (NOT the
operator)

The following notifications are sent:

• IC_UPD_AVAILABLE_LINES

• IC_UPD_INCOMING_CALL

• IC_UPD_OPERATOR_STATE

Put down the hook on
a unit (NOT the
operator)

The following notifications are sent:

• IC_UPD_AVAILABLE_LINES

• IC_UPD_OPERATOR_STATE

Operator picks up the
hook

The following notifications are sent:

• IC_UPD_AVAILABLE_LINES

• IC_UPD_OPERATOR_STATE

Operator puts down
the hook

The following notifications are sent:

• IC_UPD_AVAILABLE_LINES

• IC_UPD_OPERATOR_STATE

12.3.2 Intercom notifications

12.3.2.1 IC_UPD_AVAILABLE_LINES
Purpose
Notifies the remote controller about the number of lines that are available for intercom.

Notify structure with this update
The update comes with the following structure:

BYTE byLines;

where:

byLines The number of available intercom lines.

12.3.2.2 IC_UPD_OPERATOR_STATE
Purpose
Notifies the remote controller about the state of the operator.

Notify structure with this update
The update comes with the following structure:

BYTE byState;

where:

byState The state of the operator This can be one of the following

DCN Next Generation Open Interface Release 4.1 en | 173

Bosch Security Systems | 2013 March

values:

• IC_C_NOT_PRESENT

• IC_C_IDLE

• IC_C_NO_OPER

• IC_C_CONNECTED

• IC_C_CONN_BREAK

• IC_C_NO_REQ

• IC_C_RECEIVING

• IC_C_DIALING

• IC_C_RETURN

12.3.2.3 IC_UPD_CONNECTION_INFO
Purpose
Notifies the remote controller that there is a change in the intercom connections.

Notify structure with this update
The update comes with the following structure:

typedef struct

{

 UNITID wCallerId;

 UNITID wReceiverId;

 BOOLEAN bLinked;

} IC_T_CONNECTION_INFO;

where:

wCallerId Unit Identifier of the calling unit.

wReceiverId Unit Identifier of the receiving unit.

bLinked Indication of the status of the link. TRUE if the connection has
been made. FALSE if the connection is disconnected.

12.3.2.4 IC_UPD_INCOMING_CALL
Purpose
Notifies the remote controller that a handset of a unit has been picked up.

Notify structure with this update
The update comes with the following structure:

typedef struct

{

 UNITID wUnitId;

 WORD wUnitType;

} IC_T_INCOMMING_CALL;

where:

wUnitId Unit Identifier of the unit initiating the call.

wUnitType The type of the unit which initiates the call

DCN Next Generation Open Interface Release 4.1 en | 174

Bosch Security Systems | 2013 March

APPENDIX A. PROTOCOL, TCP/IP SETTING

A.1. TCP/IP port setting DCN-CCU
The TCP/IP port number used for the communication between the CCU and the remote
controller is fixed set to the following value:

TCP/IP Port
number

9451 DCN NGOpen Interface protocol port

DCN Next Generation Open Interface Release 4.1 en | 175

Bosch Security Systems | 2013 March

APPENDIX B. VALUES OF THE DEFINES
In this document some definitions are given, which have values connected to them. In this appendix all defines will be connected to their values;

The values are presented in ‘C’-syntax

B.1. Defines sorted on application
#define MDSC_NAK 2

#define MDSC_REMOTEPROCEDURE_REQ 3

#define MDSC_REMOTEPROCEDURE_RSP 4

#define MDSC_NOTIFY 5

#define MDSC_COMMUNICATION_PARAMS 15

#define RSMC_SET_COMMUNICATION_PARAMS 0x0001

#define RSMC_RSP_COMMUNICATION_PARAMS 0x0002

#define MKWORD(LSB,MSB) ((WORD)(((WORD)(MSB)<<8) | (WORD)(LSB)))

#define MESSAGETYPE_OIP_KeepAlive 0x00447027

#define MESSAGETYPE_OIP_ResponseProtocolError 0x00447020

#define DCNC_APP_DB 3

#define DCNC_APP_SI 17

#define DCNC_APP_SC 16

#define DB_C_START_APP MKWORD(1,DCNC_APP_DB)

#define DB_C_STOP_APP MKWORD(2,DCNC_APP_DB)

#define DB_C_MAINT_CCU MKWORD(3,DCNC_APP_DB)

#define DB_C_CLEAR_CCU MKWORD(4,DCNC_APP_DB)

#define DB_C_CCU_APPLY_ONE MKWORD(5,DCNC_APP_DB)

#define DB_C_DOWNLOAD_CCU MKWORD(6,DCNC_APP_DB)

DCN Next Generation Open Interface Release 4.1 en | 176

Bosch Security Systems | 2013 March

#define SC_C_GET_CCU_VERSIONINFO MKWORD(6,DCNC_APP_SC)

#define SC_C_START_APP MKWORD(7,DCNC_APP_SC)

#define SC_C_STOP_APP MKWORD(8,DCNC_APP_SC)

#define SC_C_CONNECT_UNIT MKWORD(9,DCNC_APP_SC)

#define SC_C_DISCONNECT_UNIT MKWORD(10,DCNC_APP_SC)

#define SC_C_GET_CCU_CONFIG MKWORD(12,DCNC_APP_SC)

#define SC_C_CONNECT_SLAVE_CCU MKWORD(13,DCNC_APP_SC)

#define SC_C_DISCONNECT_SLAVE_CCU MKWORD(14,DCNC_APP_SC)

#define SC_C_CCU_REBOOT MKWORD(15,DCNC_APP_SC)

#define SC_C_CCU_MODE_CHANGE MKWORD(16,DCNC_APP_SC)

#define SC_C_CHECK_LINK MKWORD(18,DCNC_APP_SC)

#define SC_C_BATTERY_STATUS_REQ MKWORD(39,DCNC_APP_SC)

#define SC_C_BATTERY_INFO_REQ MKWORD(40,DCNC_APP_SC)

#define SC_C_SIGNAL_STATUS_REQ MKWORD(41,DCNC_APP_SC)

#define SC_C_SIGNAL_QUALITY_REQ MKWORD(42,DCNC_APP_SC)

#define SC_C_BATTERY_STATUS MKWORD(43,DCNC_APP_SC)

#define SC_C_BATTERY_INFO_SERIAL MKWORD(44,DCNC_APP_SC)

#define SC_C_BATTERY_INFO_COND MKWORD(45,DCNC_APP_SC)

#define SC_C_SIGNAL_STATUS MKWORD(46,DCNC_APP_SC)

#define SC_C_SIGNAL_QUALITY MKWORD(47,DCNC_APP_SC)

#define SC_C_GET_CCU_CONFIG_PROPERTY MKWORD(51,DCNC_APP_SC)

#define SC_C_REQ_SERIAL_NR MKWORD(53,DCNC_APP_SC)

#define SC_C_GET_SLAVE_NODES MKWORD(54,DCNC_APP_SC)

#define SC_C_GET_UNIT_IDS MKWORD(55,DCNC_APP_SC)

#define SC_C_SERIAL_NR MKWORD(56,DCNC_APP_SC)

#define SC_C_UNIT_SIGNAL_QUALITY_REQ MKWORD(57,DCNC_APP_SC)

#define SC_C_UNIT_SIGNAL_QUALITY MKWORD(58,DCNC_APP_SC)

#define SC_C_SET_ENCRYPTION_ENABLED MKWORD(63,DCNC_APP_SC)

#define SC_C_GET_ENCRYPTION_ENABLED MKWORD(64,DCNC_APP_SC)

#define SC_C_ENCRYPTION_ENABLED MKWORD(65,DCNC_APP_SC)

#define SC_C_LOW_BATTERY MKWORD(68,DCNC_APP_SC)

#define SC_C_LOW_BATTERY_REQ MKWORD(69,DCNC_APP_SC)

DCN Next Generation Open Interface Release 4.1 en | 177

Bosch Security Systems | 2013 March

#define SI_C_SELECT_UNIT MKWORD(1,DCNC_APP_SI)

#define SI_C_START_INSTALL MKWORD(4,DCNC_APP_SI)

#define SI_C_STOP_INSTALL MKWORD(5,DCNC_APP_SI)

#define SI_C_REGISTER_UNIT MKWORD(9,DCNC_APP_SI)

#define SI_C_SET_MASTER_VOL MKWORD(10,DCNC_APP_SI)

#define SI_C_SET_EXT_CONTACT MKWORD(13,DCNC_APP_SI)

#define SI_C_GET_EXT_CONTACT MKWORD(14,DCNC_APP_SI)

#define SI_C_SET_MICROPHONE_GAIN MKWORD(15,DCNC_APP_SI)

#define SI_C_GET_MICROPHONE_GAIN MKWORD(16,DCNC_APP_SI)

#define SI_C_RESET_MICROPHONE_GAIN MKWORD(17,DCNC_APP_SI)

#define SI_C_GET_WAP_SETTINGS MKWORD(18,DCNC_APP_SI)

#define SI_C_SET_WAP_SETTINGS MKWORD(19,DCNC_APP_SI)

#define SI_C_GET_WIRELESS_SETTINGS MKWORD(20,DCNC_APP_SI)

#define SI_C_SET_WIRELESS_SETTINGS MKWORD(21,DCNC_APP_SI)

#define SI_C_GET_NETWORK_MODE MKWORD(22,DCNC_APP_SI)

#define SI_C_SET_NETWORK_MODE MKWORD(23,DCNC_APP_SI)

#define SI_C_WAP_SETTINGS MKWORD(24,DCNC_APP_SI)

#define SI_C_WIRELESS_SETTINGS MKWORD(25,DCNC_APP_SI)

#define SI_C_NETWORK_MODE MKWORD(26,DCNC_APP_SI)

#define SI_C_START_MON_SI MKWORD(27,DCNC_APP_SI)

#define SI_C_STOP_MON_SI MKWORD(28,DCNC_APP_SI)

#define SI_C_UNSUBSCRIBE_REQ MKWORD(29,DCNC_APP_SI)

#define SI_C_DEINITIALIZE_ALL MKWORD(30,DCNC_APP_SI)

#define SI_C_GET_OPERATION_MODE MKWORD(31,DCNC_APP_SI)

#define SI_C_SET_OPERATION_MODE MKWORD(32,DCNC_APP_SI)

#define SI_C_MICROPHONE_GAIN MKWORD(33,DCNC_APP_SI)

#define SI_C_MICROPHONE_GAIN_RESET MKWORD(34,DCNC_APP_SI)

/* Defines for external contact */

#define SI_C_NO_FUNCTION 0

#define SI_C_PRESENT 1

DCN Next Generation Open Interface Release 4.1 en | 178

Bosch Security Systems | 2013 March

#define SI_C_FRAUD 2

/* Defines for Options field in Wap settings */

#define WAP_ENABLE_LANGUAGE_DISTRIBUTION 0x01

#define WAP_ENABLE_ENCRYPTION 0x02

/* Defines for wireless carrier band */

#define SI_C_CARRIER_BAND_1 0

#define SI_C_CARRIER_BAND_2 1

#define SI_C_CARRIER_BAND_3 2

/* Defines for wireless power level */

#define SI_C_POWERLEVEL_OFF 0

#define SI_C_POWERLEVEL_LOW 1

#define SI_C_POWERLEVEL_MEDIUM 2

#define SI_C_POWERLEVEL_HIGH 3

/* Defines for network mode */

#define SI_C_NETWORK_MODE_ON 0

#define SI_C_NETWORK_MODE_SLEEP 1

#define SI_C_NETWORK_MODE_OFF 2

#define SI_C_NETWORK_MODE_SUBSCRIPTION 3

#define DBSC_MAX_ACT_UNIT 512 /* SCCU system */

#define DBSC_MAX_DELEGATE DBSC_MAX_ACT_UNIT

#define DBSC_NCHAR_SCREENLINE 33

#define DCNC_TYPE_DELEGATE 0x00

#define DCNC_TYPE_CHAIRMAN 0x10

#define DCNC_SUBTYPE_CONCENTUS 0x00

#define DCNC_SUBTYPE_FLUSH 0x01

#define DCNC_SUBTYPE_FLUSH_DUAL 0x02

#define DCNC_SUBTYPE_DISC 0x03

#define DCNC_SUBTYPE_DISC_DUAL 0x04

DCN Next Generation Open Interface Release 4.1 en | 179

Bosch Security Systems | 2013 March

#define DCNC_SUBTYPE_VOTING 0x09

#define DCNC_TYPE_ENTRANCE 0x30

#define DCNC_TYPE_EXIT 0x40

#define DCNC_TYPE_AMBIENT_MIC 0x50

#define DCNC_TYPE_INTERPRETER 0x60

#define DCNC_SUBTYPE_DESK 0x00

#define DCNC_SUBTYPE_AAEX 0x01

#define DCNC_SUBTYPE_DAEX 0x02

#define DCNC_SUBTYPE_CIN 0x03

#define DCNC_TYPE_DDB 0x70

#define DCNC_SUBTYPE_PASSIVE_DDB 0x00

#define DCNC_SUBTYPE_ACTIVE_DDB 0x01

#define DCNC_SUBTYPE_RS232 0x02

#define DCNC_TYPE_CHANNELSELECTOR 0x80

#define DCNC_SUBTYPE_PASSIVE 0x00

#define DCNC_SUBTYPE_4CHANNEL 0x01

#define DCNC_SUBTYPE_8CHANNEL 0x02

#define DCNC_SUBTYPE_16CHANNEL 0x03

#define DCNC_SUBTYPE_32CHANNEL 0x04

#define DCNC_UNIT_VOTING (DCNC_TYPE_DELEGATE | DCNC_SUBTYPE_VOTING)

#define DCNC_UNIT_INTEGRUS4 (DCNC_TYPE_CHANNELSELECTOR | DCNC_SUBTYPE_4CHANNEL)

DCN Next Generation Open Interface Release 4.1 en | 180

Bosch Security Systems | 2013 March

#define DCNC_UNIT_INTEGRUS8 (DCNC_TYPE_CHANNELSELECTOR | DCNC_SUBTYPE_8CHANNEL)

#define DCNC_UNIT_INTEGRUS16 (DCNC_TYPE_CHANNELSELECTOR | DCNC_SUBTYPE_16CHANNEL)

#define DCNC_UNIT_INTEGRUS32 (DCNC_TYPE_CHANNELSELECTOR | DCNC_SUBTYPE_32CHANNEL)

#define DCNC_UNIT_DATA_COMM (DCNC_TYPE_DDB | DCNC_SUBTYPE_ACTIVE_DDB)

#define DCNC_UNIT_NG_INTERPRETER (DCNC_TYPE_INTERPRETER | DCNC_SUBTYPE_DESK)

#define DCNC_UNIT_DATA_COMM_RS232 (DCNC_TYPE_DDB | DCNC_SUBTYPE_RS232)

#define DCNC_UNIT_2000_DELEGATE (DCNC_TYPE_DELEGATE | DCNC_SUBTYPE_CONCENTUS)

#define DCNC_UNIT_2000_CHAIRMAN (DCNC_TYPE_CHAIRMAN | DCNC_SUBTYPE_CONCENTUS)

#define DCNC_UNIT_AUDIO_IO (DCNC_TYPE_INTERPRETER | DCNC_SUBTYPE_AAEX)

#define DCNC_UNIT_AUDIO_IO_DIGITAL (DCNC_TYPE_INTERPRETER | DCNC_SUBTYPE_DAEX)

#define DCNC_UNIT_COBRANET (DCNC_TYPE_INTERPRETER | DCNC_SUBTYPE_CIN)

#define DCNC_UNIT_DISC_DELEGATE (DCNC_TYPE_DELEGATE | DCNC_SUBTYPE_DISC)

#define DCNC_UNIT_DISC_DELEGATE_DUAL (DCNC_TYPE_DELEGATE | DCNC_SUBTYPE_DISC_DUAL)

#define DCNC_UNIT_DISC_CHAIRMAN (DCNC_TYPE_CHAIRMAN | DCNC_SUBTYPE_DISC)

#define DCNC_UNIT_DUAL_MIC (DCNC_TYPE_DELEGATE | DCNC_SUBTYPE_FLUSH_DUAL)

#define DCNC_UNIT_FLUSH_CHR_NODISPLAY (DCNC_TYPE_CHAIRMAN| DCNC_SUBTYPE_FLUSH)

#define DCNC_UNIT_FLUSH_DEL_NODISPLAY (DCNC_TYPE_DELEGATE| DCNC_SUBTYPE_FLUSH)

#define DCNC_UNIT_ENTRANCE (DCNC_TYPE_ENTRANCE)

#define DCNC_UNIT_EXIT (DCNC_TYPE_EXIT)

#define DCNC_UNIT_AMBIENT_MIC (DCNC_TYPE_AMBIENT_MIC)

#define DCNC_VER_ENGLISH 0

#define DCNC_VER_FRENCH 1

#define DCNC_VER_GERMAN 2

#define DCNC_VER_ITALIAN 3

#define DCNC_VER_SPANISH 4

#define DCNC_VER_SIXTH 5 /* Depending on downloaded OMF-file */

DCN Next Generation Open Interface Release 4.1 en | 181

Bosch Security Systems | 2013 March

#define DCNC_VER_DEFAULT 0xFF /* Unit uses Default language */

#define DCNC_MICROPHONE_GAIN_DEFAULT 6

#define DCNC_DEFAULT_MASTERVOLUME 12

#define DB_C_NO_PIN 0

#define DB_C_NO_CARD 0

#define DCNC_UNASSIGNED_UNIT 0xFFFF

#define DCNC_MAX_IND_CHANNEL 26

#define SC_C_DCN_CCU 1

#define SC_C_DCN_CCUB 2

#define SC_C_DCN_CCU2 3

#define SC_C_DCN_CCUB2 4

#define SC_C_STANDALONE 0x01

#define SC_C_EXTENDED 0x02

#define SC_C_SINGLETRUNC 0x04

#define SC_C_MULTITRUNC 0x08

#define SC_C_MASTER 0x10

#define SC_C_SLAVE 0x20

#define SI_C_GLOBAL_INSTALL_MODE 1

#define SI_C_OPERATIONAL_INSTALL_MODE 2

#define DB_C_CONTROL 1

#define SC_C_MAX_HARDWARE_INFO 50

#define SC_C_CLUSTER_MAX 1500

#define SC_C_MAX_SOFTWARE_INFO 29

#define SC_C_MAX_VERSION_LENGTH 50

#define DB_C_MAX_N_DL_DEL_REC 50

DCN Next Generation Open Interface Release 4.1 en | 182

Bosch Security Systems | 2013 March

#define VERSION_C_LENGTH 11

#define MAX_CARD_CODE 999999999

#define MAX_VOTE_WEIGTH 99999999

#define DCNC_SM_DOWN 0

#define DCNC_SM_INIT 1

#define DCNC_SM_CONFIG 2

#define DCNC_SM_CONGRESS 3

#define DCNC_SM_MAINTENANCE 4

#define DCNC_SM_DOWNLOAD 5

#define TRUE 1

#define FALSE 0

#define DCNC_HAS_MIC 0x0001

#define DCNC_HAS_AUX 0x0002

#define DCNC_HAS_KEYS 0x0004

#define DCNC_HAS_CARD 0x0008

#define DCNC_HAS_DISPLAY 0x0010

#define DCNC_HAS_GRAPHICAL_DISPLAY 0x0020

#define DCNC_HAS_INTERCOM 0x0040

#define DCNC_HAS_EXTERNAL 0x0080

#define DCNC_HAS_BOOTH_DESK 0x0100

#define DCNC_HAS_HELP 0x0200

#define DCNC_HAS_SPEAKSLOWLY 0x0400

#define DCNC_HAS_BATTERY 0x0800 /* For wireless units */

#define DCNC_HAS_QUALITY_LEVEL 0x1000 /* For wireless units */

#define DCNC_HAS_DATACHANNEL_SUPPORT 0x2000

#define DCNC_HAS_MOST_INTERFACE 0x4000

DCN Next Generation Open Interface Release 4.1 en | 183

Bosch Security Systems | 2013 March

#define DCNC_HAS_NEED_FOR_CARD_SETTINGS 0x8000

#define KWORD(lb,hb) ((WORD)(((WORD)(hb))<<8) | (WORD)(lb)))

#define CNC_APP_MM 0

#define MM_C_MICRO_ON_OFF (MKWORD(1,DCNC_APP_MM))

#define MM_C_CHAIR_MICS_ON (MKWORD(2,DCNC_APP_MM))

#define MM_C_TIMER_ON_OFF (MKWORD(3,DCNC_APP_MM))

#define MM_C_RTS_SET_ON_PC (MKWORD(4,DCNC_APP_MM))

#define MM_C_RTS_CLEAR_ON_PC (MKWORD(5,DCNC_APP_MM))

#define MM_C_RTS_REMOVE_ON_PC (MKWORD(6,DCNC_APP_MM))

#define MM_C_RTS_INSERT_ON_PC (MKWORD(7,DCNC_APP_MM))

#define MM_C_RTS_REPLACE_ON_PC (MKWORD(8,DCNC_APP_MM))

#define MM_C_NBK_SET_ON_PC (MKWORD(9,DCNC_APP_MM))

#define MM_C_NBK_CLEAR_ON_PC (MKWORD(10,DCNC_APP_MM))

#define MM_C_NBK_REMOVE_ON_PC (MKWORD(11,DCNC_APP_MM))

#define MM_C_SPK_SET_ON_PC (MKWORD(12,DCNC_APP_MM))

#define MM_C_SPK_CLEAR_ON_PC (MKWORD(13,DCNC_APP_MM))

#define MM_C_SPK_APPEND_ON_PC (MKWORD(14,DCNC_APP_MM))

#define MM_C_SPK_REMOVE_ON_PC (MKWORD(15,DCNC_APP_MM))

#define MM_C_SPK_INSERT_ON_PC (MKWORD(16,DCNC_APP_MM))

#define MM_C_SPK_REPLACE_ON_PC (MKWORD(17,DCNC_APP_MM))

#define MM_C_SET_MIC_OPER_MODE_ON_PC (MKWORD(18,DCNC_APP_MM))

#define MM_C_SET_ACTIVE_MICS_ON_PC (MKWORD(19,DCNC_APP_MM))

#define MM_C_RTS_FIRST_ON_PC (MKWORD(20,DCNC_APP_MM))

#define MM_C_SET_SETTINGS_ON_PC (MKWORD(21,DCNC_APP_MM))

DCN Next Generation Open Interface Release 4.1 en | 184

Bosch Security Systems | 2013 March

#define MM_C_CR_CLEAR_ON_PC (MKWORD(22,DCNC_APP_MM))

#define MM_C_CR_ADD_ON_PC (MKWORD(23,DCNC_APP_MM))

#define MM_C_CR_REMOVE_ON_PC (MKWORD(24,DCNC_APP_MM))

#define MM_C_CR_REPLACE_ON_PC (MKWORD(25,DCNC_APP_MM))

#define MM_C_CS_CLEAR_ON_PC (MKWORD(26,DCNC_APP_MM))

#define MM_C_CS_ADD_ON_PC (MKWORD(27,DCNC_APP_MM))

#define MM_C_CS_REMOVE_ON_PC (MKWORD(28,DCNC_APP_MM))

#define MM_C_START_MM (MKWORD(30,DCNC_APP_MM))

#define MM_C_STOP_MM (MKWORD(31,DCNC_APP_MM))

#define MM_C_GET_SETTINGS (MKWORD(32,DCNC_APP_MM))

#define MM_C_SET_SETTINGS (MKWORD(33,DCNC_APP_MM))

#define MM_C_SET_MICRO_ON_OFF (MKWORD(34,DCNC_APP_MM))

#define MM_C_SHIFT (MKWORD(35,DCNC_APP_MM))

#define MM_C_RTS_SET (MKWORD(36,DCNC_APP_MM))

#define MM_C_RTS_GET (MKWORD(37,DCNC_APP_MM))

#define MM_C_RTS_CLEAR (MKWORD(38,DCNC_APP_MM))

#define MM_C_RTS_REMOVE (MKWORD(39,DCNC_APP_MM))

#define MM_C_RTS_INSERT (MKWORD(40,DCNC_APP_MM))

#define MM_C_NBK_SET (MKWORD(42,DCNC_APP_MM))

#define MM_C_NBK_GET (MKWORD(43,DCNC_APP_MM))

#define MM_C_NBK_CLEAR (MKWORD(44,DCNC_APP_MM))

#define MM_C_NBK_REMOVE (MKWORD(45,DCNC_APP_MM))

#define MM_C_SPK_GET (MKWORD(46,DCNC_APP_MM))

#define MM_C_SPK_CLEAR (MKWORD(47,DCNC_APP_MM))

#define MM_C_SPK_APPEND (MKWORD(48,DCNC_APP_MM))

DCN Next Generation Open Interface Release 4.1 en | 185

Bosch Security Systems | 2013 March

#define MM_C_SPK_REMOVE (MKWORD(49,DCNC_APP_MM))

#define MM_C_SET_MIC_OPER_MODE (MKWORD(52,DCNC_APP_MM))

#define MM_C_SET_ACTIVE_MICS (MKWORD(53,DCNC_APP_MM))

#define MM_C_SET_SPEECHTIME_SETTINGS (MKWORD(59,DCNC_APP_MM))

#define MM_C_LAST_MINUTE_WARNING (MKWORD(60,DCNC_APP_MM))

#define MM_C_TIME_FINISHED_WARNING (MKWORD(61,DCNC_APP_MM))

#define MM_C_RTS_APPEND (MKWORD(62,DCNC_APP_MM))

#define MM_C_CR_REMOVE (MKWORD(64,DCNC_APP_MM))

#define MM_C_SHIFT_CR (MKWORD(65,DCNC_APP_MM))

#define MM_C_CR_GET (MKWORD(66,DCNC_APP_MM))

#define MM_C_CS_REMOVE (MKWORD(67,DCNC_APP_MM))

#define MM_C_CS_GET (MKWORD(68,DCNC_APP_MM))

#define MM_C_START_MON_MM (MKWORD(69,DCNC_APP_MM))

#define MM_C_STOP_MON_MM (MKWORD(70,DCNC_APP_MM))

#define MM_C_GET_SETTINGS (MKWORD(32,DCNC_APP_MM))

#define MM_C_SET_SETTINGS (MKWORD(33,DCNC_APP_MM))

#define MM_C_PC_MIC_ON 1

#define MM_C_PC_MIC_OFF 2

#define MM_C_PC_MIC_NONE 3

#define MM_C_PC_PRIO_ON 1

#define MM_C_PC_PRIO_OFF 2

#define MM_C_PC_PRIO_NONE 3

/* Defines for MM notebook */

#define MM_C_VIP_CHAIRMAN 1 /* Chairman */

DCN Next Generation Open Interface Release 4.1 en | 186

Bosch Security Systems | 2013 March

#define MM_C_VIP_KEY 2 /* Delegate set as Button Activated */

#define MM_C_VIP_OPERATOR 3 /* Delegate set as Operator activated */

#define MM_C_VIP_VOICE 4 /* Delegate set as Voice activated */

#define MM_C_VIP_VCHAIR 5 /* Chairman set as Voice activated */

#define MM_C_CHAIRMAN_NO_AC 6 /* Chairman exclude from Access Control */

#define MM_C_KEY_NO_AC 7 /* Button Activated Delegate excluded from Access Control */

#define MM_C_OPERATOR_NO_AC 8 /* Operator Activated Delegate excluded from Access Control */

#define MM_C_VOICE_NO_AC 9 /* Voice Activated Delegate excluded from Access Control */

#define MM_C_VCHAIR_NO_AC 10 /* Voice Activated Chairman excluded from Access Control */

#define MM_C_VIP_PTTCHAIRMAN 11 /* Chairman as push to talk notebooker */

#define MM_C_VIP_PTT 12 /* Delegate as push to talk notebooker */

#define MM_C_VIP_PTTCHAIRMAN_NO_AC 13 /* Chairman as push to talk notebooker excluded from access control */

#define MM_C_VIP_PTT_NO_AC 14 /* Delegate as push to talk notebooker excluded from access control */

#define MM_C_OPERATOR_WITH_REQ_LIST 0

#define MM_C_DELEGATE_WITH_REQ_LIST 1

#define MM_C_DELEGATE_WITH_OVERRIDE 2

#define MM_C_DELEGATE_WITH_VOICE 3

#define MM_C_OPERATOR_WITH_COMMENT_LIST 4

#define MM_C_DELEGATE_WITH_PUSHTOTALK 5

#define DBSC_MAX_SPEAKERLIST 4

#define DBSC_MAX_NOTEBOOKLIST 15

#define DBSC_MAX_DELRTS 100

#define DBSC_MAX_DELCR 5

#define DBSC_MAX_DELCS 1

DCN Next Generation Open Interface Release 4.1 en | 187

Bosch Security Systems | 2013 March

#define DBSC_EMPTY_UNIT (0xFFFF)

#define DBSC_EMPTY_DELEGATE (0xFFFF)

#define MM_C_ATTENTION_OFF 0

#define MM_C_ATTENTION_TONE1 1

#define MM_C_ATTENTION_TONE2 2

#define MM_C_ATTENTION_TONE3 3

#define MKWORD(lb,hb) ((WORD)(((WORD)(hb))<<8) | (WORD)(lb)))

#define DCNC_APP_CC 21

#define CC_C_START_CAMERA_APP (MKWORD(1,DCNC_APP_CC))

#define CC_C_STOP_CAMERA_APP (MKWORD(2,DCNC_APP_CC))

#define CC_C_SET_CAMERA_ACTIVITY (MKWORD(3,DCNC_APP_CC))

#define CC_C_SET_GLOBAL_SETTINGS (MKWORD(4,DCNC_APP_CC))

#define CC_C_CLEAR_CAMERA_ASSIGNMENTS (MKWORD(5,DCNC_APP_CC))

#define CC_C_SET_CAMERA_ASSIGNMENT (MKWORD(6,DCNC_APP_CC))

#define CC_C_SEND_DATA (MKWORD(7,DCNC_APP_CC))

#define CC_C_CLEAR_CAMERA_IDS (MKWORD(8,DCNC_APP_CC))

#define CC_C_SET_CAMERA_ID (MKWORD(9,DCNC_APP_CC))

#define CC_C_GET_GLOBAL_SETTINGS (MKWORD(10,DCNC_APP_CC))

#define CC_C_RECEIVE_DATA (MKWORD(16,DCNC_APP_CC))

#define CC_C_SCREEN_LINE 0

DCN Next Generation Open Interface Release 4.1 en | 188

Bosch Security Systems | 2013 March

#define CC_C_SEAT_TEXT 1

#define CC_C_SCREEN_LINE_DOUBLE 2

#define CC_C_SEAT_TEXT_DOUBLE 3

#define CC_C_NO_CAMERA_CONTROL_TYPE 0

#define CC_C_ALLEGIANT_VIDEO_SWITCHER 1

#define CC_C_DIRECT_CAMERA_CONTROL 2

#define CC_C_MAX_CAMERA_ASSIGNMENT_CLUSTER 100

#define CC_C_MAX_CAMERA_ID_CLUSTER 10

#define CC_C_MAX_SEAT_TEXT_LEN 17

#define CC_C_MAX_CAMERA_ID_LEN 17

#define CC_C_MAX_DATA_LEN 60

#define CC_C_OVERVIEW_ID ((UNITID)0x0000)

#define DBSC_MAX_UNIT 576

#define DBSC_EMPTY_PREPOS 255

#define DBSC_MAX_CAMERA 256

#define DBSC_MAX_PREPOSITION 99

#define MKWORD(lb,hb) ((WORD)(((WORD)(hb))<<8) | (WORD)(lb)))

#define DCNC_APP_IN 2

#define IN_C_CHAN_STATUS (MKWORD(1,DCNC_APP_IN))

#define IN_C_CCU_CONFIG (MKWORD(2,DCNC_APP_IN))

DCN Next Generation Open Interface Release 4.1 en | 189

Bosch Security Systems | 2013 March

#define IN_C_FLASHING_MIC_ON (MKWORD(3,DCNC_APP_IN))

#define IN_C_FLOOR_DISTRIBUTION (MKWORD(4,DCNC_APP_IN))

#define IN_C_LANGUAGE_LIST (MKWORD(5,DCNC_APP_IN))

#define IN_C_SPEAKSLOWLY_SIGN (MKWORD(6,DCNC_APP_IN))

#define IN_C_HELP_SIGN (MKWORD(7,DCNC_APP_IN))

#define IN_C_DESK_UPDATE (MKWORD(36,DCNC_APP_IN))

#define IN_C_BOOTH_UPDATE (MKWORD(37,DCNC_APP_IN))

#define IN_C_SIGNAL_CCU (MKWORD(38,DCNC_APP_IN))

#define IN_C_UPDATE_LCK (MKWORD(39,DCNC_APP_IN))

#define IN_C_LOAD_INT_DB (MKWORD(40,DCNC_APP_IN))

#define IN_C_CHANNEL_UPDATE (MKWORD(41,DCNC_APP_IN))

#define IN_C_DOWNLOAD_LANGLIST (MKWORD(50,DCNC_APP_IN))

#define IN_C_SET_FLASH_MIC_ON (MKWORD(51,DCNC_APP_IN))

#define IN_C_SET_FLOOR_DIST (MKWORD(52,DCNC_APP_IN))

#define IN_C_GET_FLOOR_DIST (MKWORD(53,DCNC_APP_IN))

#define IN_C_START_MON_IN (MKWORD(54,DCNC_APP_IN))

#define IN_C_STOP_MON_IN (MKWORD(55,DCNC_APP_IN))

#define IN_C_START_IN_APP (MKWORD(56,DCNC_APP_IN))

#define IN_C_STOP_IN_APP (MKWORD(57,DCNC_APP_IN))

#define IN_C_SET_SPEAKSLOWLY_SIGN (MKWORD(68,DCNC_APP_IN))

#define IN_C_GET_SPEAKSLOWLY_SIGN (MKWORD(69,DCNC_APP_IN))

#define IN_C_SET_HELP_SIGN (MKWORD(70,DCNC_APP_IN))

#define IN_C_GET_HELP_SIGN (MKWORD(71,DCNC_APP_IN))

#define IN_C_UPDATE_LOCK (MKWORD(73,DCNC_APP_IN))

#define IN_C_ASSIGN_UNIT (MKWORD(74,DCNC_APP_IN))

#define IN_C_UNASSIGN_UNIT (MKWORD(77,DCNC_APP_IN))

DCN Next Generation Open Interface Release 4.1 en | 190

Bosch Security Systems | 2013 March

#define IN_C_NONEMODE 0

#define IN_C_OVERRIDE 1

#define IN_C_INTERLOCK 2

#define IN_C_OVERRIDE_ON_B_ONLY 3

#define IN_C_ENG_LANG_LIST_ID 1

#define IN_C_FR_LANG_LIST_ID 2

#define IN_C_ORG_LANG_LIST_ID 3

#define IN_C_CUS_LANG_LIST_1_ID 4

#define IN_C_CUS_LANG_LIST_2_ID 5

#define IN_C_CUS_LANG_LIST_3_ID 6

#define IN_C_NOMORE_CHANNELS 255

#define IN_C_DEF_LANG 1

#define DBSC_MAX_INTERPRT_CHANNEL 31

#define DBSC_MAX_INTBOOTH 31

#define DBSC_MAX_DESK_PER_BOOTH 6

#define DBSC_MAX_INTSEAT (DBSC_MAX_INTBOOTH * DBSC_MAX_DESK_PER_BOOTH)

#define DBSC_MAX_LANGNAME 53

#define DBSC_NCHAR_LANGNAME 13

#define DBSC_NCHAR_LANGABBR 4

#define IN_C_STANDALONE 0

#define IN_C_WITHPC 1

DCN Next Generation Open Interface Release 4.1 en | 191

Bosch Security Systems | 2013 March

#define DCNC_UNASSIGNED_UNIT ((UNITID)0xFFFF)

#define MKWORD(lb,hb) ((WORD)(((WORD)(hb))<<8) | (WORD)(lb)))

#define DCNC_APP_VT 1

#define VT_C_START_APP (MKWORD(1,DCNC_APP_VT))

#define VT_C_STOP_APP (MKWORD(2,DCNC_APP_VT))

#define VT_C_START_VOTING (MKWORD(3,DCNC_APP_VT))

#define VT_C_STOP_VOTING (MKWORD(4,DCNC_APP_VT))

#define VT_C_HOLD_VOTING (MKWORD(5,DCNC_APP_VT))

#define VT_C_RESTART_VOTING (MKWORD(6,DCNC_APP_VT))

#define VT_C_DOWNLOAD_SUBJECT (MKWORD(7,DCNC_APP_VT))

#define VT_C_SET_GLOBAL_SETTINGS (MKWORD(9,DCNC_APP_VT))

#define VT_C_SET_VOTINGPARAMS (MKWORD(10,DCNC_APP_VT))

#define VT_C_GET_RESULTS (MKWORD(12,DCNC_APP_VT))

#define VT_C_GET_ATTENTION_TONE (MKWORD(24,DCNC_APP_VT))

#define VT_C_SET_ATTENTION_TONE (MKWORD(25,DCNC_APP_VT))

#define VT_C_START_ATTENTION_TONE (MKWORD(26,DCNC_APP_VT))

#define VT_C_RESULTSNOTIFY (MKWORD(23,DCNC_APP_VT))

#define VT_C_MAX_LEN_SUBJECT 142

#define VT_C_MAX_LEN_LEGEND 11

#define VT_C_MAX_ANSWER_OPTIONS 25

#define VT_C_MAX_RESULT_DELEGATE 2000

DCN Next Generation Open Interface Release 4.1 en | 192

Bosch Security Systems | 2013 March

#define VT_C_VOTE_YES 0x00

#define VT_C_VOTE_NO 0x01

#define VT_C_VOTE_ABSTAIN 0x02

@define VT_C_VOTE_NPPV 0x03

#define VT_C_VOTE_FOR 0x00

#define VT_C_VOTE_AGAINST 0x01

#define VT_C_VOTE_DOUBLE_MINUS 0x00

#define VT_C_VOTE_MINUS 0x01

#define VT_C_VOTE_NULL 0x02

#define VT_C_VOTE_PLUS 0x03

#define VT_C_VOTE_DOUBLE_PLUS 0x04

#define VT_C_VOTE_A 0x00

#define VT_C_VOTE_1 0x00

#define VT_C_VOTE_NOT_VOTED 0xFE

#define VT_C_VOTE_UNASSIGNED 0xFF

#define VT_C_LED_SHOWVOTE 0

#define VT_C_LED_SECRET_ON_OFF 1

#define VT_C_LED_SECRET_FLASH_ON 2

#define VT_C_100_PRESENT_KEY 1

#define VT_C_100_VALID_VOTES 2

#define VT_C_100_AUTHORISED_VOTES 3

#define VT_C_100_PRESENT_KEY_AND_FRAUD 4

#define VT_C_100_EXTERNAL_PRESENT 5

DCN Next Generation Open Interface Release 4.1 en | 193

Bosch Security Systems | 2013 March

#define VT_C_INT_RES_NONE 0

#define VT_C_INT_RES_TOTAL 1

#define VT_C_INT_RES_INDIV 2

#define VT_C_INT_RES_TOTAL_PC_ONLY 3

#define VT_C_INT_RES_INDIV_PC_ONLY 4

#define VT_C_MENU_YES_NO 1

#define VT_C_MENU_YES_NO_ABSTAIN 2

#define VT_C_MENU_FOR_AGAINST 3

#define VT_C_MENU_AUDIENCE_RESPONSE 4

#define VT_C_MENU_123 5

#define VT_C_MENU_ABC 6

#define VT_C_MENU_CBA 7

#define VT_C_MENU_YES_NO_ABSTAIN_NPPV 8

#define VT_C_STANDALONE_VOTING 0

#define VT_C_ATTENTION_TONE_OFF 0

#define VT_C_ATTENTION_TONE_1 1

#define VT_C_ATTENTION_TONE_2 2

#define VT_C_ATTENTION_TONE_3 3

#define DBSC_NCHAR_SCREENLINE 33

#define DBSC_MAX_DELEGATE 4000

DCN Next Generation Open Interface Release 4.1 en | 194

Bosch Security Systems | 2013 March

#define AT_C_START_AT_APP (0x0901)

#define AT_C_STOP_AT_APP (0x0902)

#define AT_C_STORE_SETTING (0x0903)

#define AT_C_ACTIVATE (0x0904)

#define AT_C_HANDLE_IDENTIFICATION (0x0905)

#define AT_C_GET_INDIV_REGISTRATION (0x0906)

#define AT_C_SEND_INDIV_REGISTRATION (0x090A)

#define AT_C_SEND_TOTAL_REGISTRATION (0x090B)

#define AT_C_APP_CONTROL 1

#define AT_C_APP_MONITOR 2

#define AT_C_SEAT 1

#define AT_C_ENTRANCE_EXIT 2

#define AT_C_ANY_SEAT 1

#define AT_C_ONE_SEAT 2

#define AT_C_PRESENTKEY 1

#define AT_C_IDCARD 2

#define AT_C_IDCARD_PINCODE 3

#define AT_C_PINCODE 4

#define AT_C_PRESENTCONTACT 5

#define AT_C_NOSTATUS 0

#define AT_C_ATTEND 1

#define AT_C_LEAVE 2

#define AT_C_ATTEND_NOCHANGE 3

#define AT_C_LEAVE_NOCHANGE 4

#define AT_C_MAX_DELEGATE 250

#define AT_C_MAX_REGISTRATION 50

DCN Next Generation Open Interface Release 4.1 en | 195

Bosch Security Systems | 2013 March

#define ACSC_EVENT_INSERT_CARD_ENTRANCE 5

#define ACSC_EVENT_INSERT_CARD_EXIT 6

#define DBSC_EMPTY_UNIT 0xFFFF

#define DBSC_EMPTY_DELEGATE 0xFFFF

#define TRUE 1

#define FALSE 0

#define MAX_CARD_CODE 999999999

#define MKWORD(lb,hb) ((WORD)(((WORD)(hb))<<8) | (WORD)(lb)))

#define DCNC_APP_LD 12

#define LD_C_START_LD_APP (MKWORD(12,DCNC_APP_LD))

#define LD_C_STOP_LD_APP (MKWORD(13,DCNC_APP_LD))

#define LD_C_STORE_DISPLAY_SETTING (MKWORD(14,DCNC_APP_LD))

#define LD_C_CLEAR_DISPLAY_NR (MKWORD(11,DCNC_APP_LD))

#define LD_C_SEND_ANUM_DATA (MKWORD(7,DCNC_APP_LD))

#define LD_C_DISPLAY_ONE 0

#define LD_C_DISPLAY_TWO 1

#define LD_C_DISPLAY_THREE 2

#define LD_C_DISPLAY_FOUR 3

#define LD_C_VT_FLAG_DISPLAY 0x1

DCN Next Generation Open Interface Release 4.1 en | 196

Bosch Security Systems | 2013 March

#define LD_C_MD_FLAG_DISPLAY 0x2

#define LD_C_MM_FLAG_DISPLAY 0x4

#define LD_C_MAX_NR_OF_DISPLAY_LINES 10

#define DCNC_MAX_DISPLAYDATA_SIZE 512

#define MKWORD(lb,hb) ((WORD)(((WORD)(hb))<<8) | (WORD)(lb)))

#define DCNC_APP_MD 10

#define MD_C_SEND_MESSAGE_TO_UNITS (MKWORD(0,DCNC_APP_MD))

#define MD_C_CLEAR_MESSAGE_ON_UNITS (MKWORD(1,DCNC_APP_MD))

#define MD_C_START_MON_MD (MKWORD(2,DCNC_APP_MD))

#define MD_C_STOP_MON_MD (MKWORD(3,DCNC_APP_MD))

#define MD_C_AUX_LED_CONTROL (MKWORD(4,DCNC_APP_MD))

#define MD_C_REQ_BUTTON_ON_OFF (MKWORD(10,DCNC_APP_MD))

#define MD_C_RCV_DELEGATE 0

#define MD_C_RCV_INTERPRETER 2

#define MD_C_RCV_HALL 3

#define MD_C_AUXILIARY_BUTTON 0

#define MD_C_SPEAKSLOWLY_BUTTON 1

#define MD_C_HELP_BUTTON 2

#define MD_C_EXTERNAL_PRESENT_CONTACT 3

DCN Next Generation Open Interface Release 4.1 en | 197

Bosch Security Systems | 2013 March

#define MD_C_IN_NOTEBOOK_LED 0x1

#define MD_C_MICRO_LED 0x2

#define MD_C_RTS_LED 0x4

#define MD_C_ALL_LEDS_OFF 0x0

#define DCNC_MAX_DISP_CHARS 41

#define DCNC_MAX_LCD_LINES 5

#define DBSC_MAX_ACT_UNIT 576

Typedef char DCNC_LCD_TEXT_BLOCK[DCNC_MAX_LCD_LINES][DCNC_MAX_DISP_CHARS]

#define MKWORD(lb,hb) ((WORD)(((WORD)(hb))<<8) | (WORD)(lb)))

#define UNITID WORD

#define DCNC_APP_IC 7

#define IC_C_START_IC_APP (MKWORD(1,DCNC_APP_IC))

#define IC_C_CLOSE_IC_APP (MKWORD(2,DCNC_APP_IC))

#define IC_C_SET_LINKS (MKWORD(3,DCNC_APP_IC))

#define IC_C_CLEAR_LINKS (MKWORD(5,DCNC_APP_IC))

#define IC_UPD_AVAILABLE_LINES (MKWORD(6,DCNC_APP_IC))

#define IC_UPD_OPERATOR_STATE (MKWORD(7,DCNC_APP_IC))

#define IC_UPD_CONNECTION_INFO (MKWORD(8,DCNC_APP_IC))

#define IC_UPD_INCOMING_CALL (MKWORD(9,DCNC_APP_IC))

DCN Next Generation Open Interface Release 4.1 en | 198

Bosch Security Systems | 2013 March

#define IC_MAX_LINKS_IN_RFC 512

#define IC_C_UNASSIGNED_UNIT 0xFFFF

#define IC_C_NOT_PRESENT 0

#define IC_C_IDLE 1

#define IC_C_NO_OPER 2

#define IC_C_RETURN 5

#define IC_C_CONNECTED 6

#define IC_C_CONN_BREAK 7

#define IC_C_NO_REQ 8

#define IC_C_RECEIVING 9

#define IC_C_DAILING 10

B.2. Defines sorted on alphabet
#define ACSC_EVENT_INSERT_CARD_ENTRANCE 5

#define ACSC_EVENT_INSERT_CARD_EXIT 6

#define AT_C_ACTIVATE (0x0904)

#define AT_C_ANY_SEAT 1

#define AT_C_APP_CONTROL 1

#define AT_C_APP_MONITOR 2

#define AT_C_ATTEND 1

#define AT_C_ATTEND_NOCHANGE 3

#define AT_C_ENTRANCE_EXIT 2

#define AT_C_GET_INDIV_REGISTRATION (0x0906)

#define AT_C_HANDLE_IDENTIFICATION (0x0905)

#define AT_C_IDCARD 2

#define AT_C_IDCARD_PINCODE 3

DCN Next Generation Open Interface Release 4.1 en | 199

Bosch Security Systems | 2013 March

#define AT_C_LEAVE 2

#define AT_C_LEAVE_NOCHANGE 4

#define AT_C_MAX_DELEGATE 250

#define AT_C_MAX_REGISTRATION 50

#define AT_C_NOSTATUS 0

#define AT_C_ONE_SEAT 2

#define AT_C_PINCODE 4

#define AT_C_PRESENTCONTACT 5

#define AT_C_PRESENTKEY 1

#define AT_C_SEAT 1

#define AT_C_SEND_INDIV_REGISTRATION (0x090A)

#define AT_C_SEND_TOTAL_REGISTRATION (0x090B)

#define AT_C_START_AT_APP (0x0901)

#define AT_C_STOP_AT_APP (0x0902)

#define AT_C_STORE_SETTING (0x0903)

#define CC_C_ALLEGIANT_VIDEO_SWITCHER 1

#define CC_C_CLEAR_CAMERA_ASSIGNMENTS (MKWORD(5,DCNC_APP_CC))

#define CC_C_CLEAR_CAMERA_IDS (MKWORD(8,DCNC_APP_CC))

#define CC_C_DIRECT_CAMERA_CONTROL 2

#define CC_C_GET_GLOBAL_SETTINGS (MKWORD(10,DCNC_APP_CC))

#define CC_C_MAX_CAMERA_ASSIGNMENT_CLUSTER 100

#define CC_C_MAX_CAMERA_ID_CLUSTER 10

#define CC_C_MAX_CAMERA_ID_LEN 17

#define CC_C_MAX_DATA_LEN 60

#define CC_C_MAX_SEAT_TEXT_LEN 17

#define CC_C_NO_CAMERA_CONTROL_TYPE 0

DCN Next Generation Open Interface Release 4.1 en | 200

Bosch Security Systems | 2013 March

#define CC_C_OVERVIEW_ID ((UNITID)0x0000)

#define CC_C_RECEIVE_DATA (MKWORD(16,DCNC_APP_CC))

#define CC_C_SCREEN_LINE 0

#define CC_C_SCREEN_LINE_DOUBLE 2

#define CC_C_SEAT_TEXT 1

#define CC_C_SEAT_TEXT_DOUBLE 3

#define CC_C_SEND_DATA (MKWORD(7,DCNC_APP_CC))

#define CC_C_SET_CAMERA_ACTIVITY (MKWORD(3,DCNC_APP_CC))

#define CC_C_SET_CAMERA_ASSIGNMENT (MKWORD(6,DCNC_APP_CC))

#define CC_C_SET_CAMERA_ID (MKWORD(9,DCNC_APP_CC))

#define CC_C_SET_GLOBAL_SETTINGS (MKWORD(4,DCNC_APP_CC))

#define CC_C_START_CAMERA_APP (MKWORD(1,DCNC_APP_CC))

#define CC_C_STOP_CAMERA_APP (MKWORD(2,DCNC_APP_CC))

#define CNC_APP_MM 0

#define DB_C_CCU_APPLY_ONE MKWORD(5,DCNC_APP_DB)

#define DB_C_CLEAR_CCU MKWORD(4,DCNC_APP_DB)

#define DB_C_CONTROL 1

#define DB_C_DOWNLOAD_CCU MKWORD(6,DCNC_APP_DB)

#define DB_C_MAINT_CCU MKWORD(3,DCNC_APP_DB)

#define DB_C_MAX_N_DL_DEL_REC 50

#define DB_C_NO_CARD 0

#define DB_C_NO_PIN 0

#define DB_C_START_APP MKWORD(1,DCNC_APP_DB)

#define DB_C_STOP_APP MKWORD(2,DCNC_APP_DB)

#define DBSC_EMPTY_DELEGATE (0xFFFF)

#define DBSC_EMPTY_DELEGATE 0xFFFF

DCN Next Generation Open Interface Release 4.1 en | 201

Bosch Security Systems | 2013 March

#define DBSC_EMPTY_PREPOS 255

#define DBSC_EMPTY_UNIT (0xFFFF)

#define DBSC_EMPTY_UNIT 0xFFFF

#define DBSC_MAX_ACT_UNIT 512 /* SCCU system */

#define DBSC_MAX_ACT_UNIT 576

#define DBSC_MAX_CAMERA 256

#define DBSC_MAX_DELCR 5

#define DBSC_MAX_DELCS 1

#define DBSC_MAX_DELEGATE DBSC_MAX_ACT_UNIT

#define DBSC_MAX_DELEGATE 4000 /* Multi CCU System */

#define DBSC_MAX_DELRTS 100

#define DBSC_MAX_DESK_PER_BOOTH 6

#define DBSC_MAX_INTBOOTH 31

#define DBSC_MAX_INTERPRT_CHANNEL 31

#define DBSC_MAX_INTSEAT (DBSC_MAX_INTBOOTH * DBSC_MAX_DESK_PER_BOOTH)

#define DBSC_MAX_LANGNAME 53

#define DBSC_MAX_NOTEBOOKLIST 15

#define DBSC_MAX_PREPOSITION 99

#define DBSC_MAX_SPEAKERLIST 4

#define DBSC_MAX_UNIT 576

#define DBSC_NCHAR_LANGABBR 4

#define DBSC_NCHAR_LANGNAME 13

#define DBSC_NCHAR_SCREENLINE 33

#define DBSC_NCHAR_SCREENLINE 33

#define DCNC_APP_CC 21

#define DCNC_APP_DB 3

DCN Next Generation Open Interface Release 4.1 en | 202

Bosch Security Systems | 2013 March

#define DCNC_APP_IC 7

#define DCNC_APP_IN 2

#define DCNC_APP_LD 12

#define DCNC_APP_MD 10

#define DCNC_APP_SC 16

#define DCNC_APP_SI 17

#define DCNC_APP_VT 1

#define DCNC_DEFAULT_MASTERVOLUME 12

#define DCNC_HAS_AUX 0x0002

#define DCNC_HAS_BATTERY 0x0800 /* For wireless units */

#define DCNC_HAS_BOOTH_DESK 0x0100

#define DCNC_HAS_CARD 0x0008

#define DCNC_HAS_DATACHANNEL_SUPPORT 0x2000

#define DCNC_HAS_DISPLAY 0x0010

#define DCNC_HAS_EXTERNAL 0x0080

#define DCNC_HAS_GRAPHICAL_DISPLAY 0x0020

#define DCNC_HAS_HELP 0x0200

#define DCNC_HAS_INTERCOM 0x0040

#define DCNC_HAS_KEYS 0x0004

#define DCNC_HAS_MIC 0x0001

#define DCNC_HAS_MOST_INTERFACE 0x4000

#define DCNC_HAS_NEED_FOR_CARD_SETTINGS 0x8000

#define DCNC_HAS_QUALITY_LEVEL 0x1000 /* For wireless units */

#define DCNC_HAS_SPEAKSLOWLY 0x0400

Typedef char DCNC_LCD_TEXT_BLOCK[DCNC_MAX_LCD_LINES][DCNC_MAX_DISP_CHARS]

#define DCNC_MAX_DISP_CHARS 41

DCN Next Generation Open Interface Release 4.1 en | 203

Bosch Security Systems | 2013 March

#define DCNC_MAX_DISPLAYDATA_SIZE 512

#define DCNC_MAX_IND_CHANNEL 26

#define DCNC_MAX_LCD_LINES 5

#define DCNC_MICROPHONE_GAIN_DEFAULT 6

#define DCNC_SM_CONFIG 2

#define DCNC_SM_CONGRESS 3

#define DCNC_SM_DOWN 0

#define DCNC_SM_DOWNLOAD 5

#define DCNC_SM_INIT 1

#define DCNC_SM_MAINTENANCE 4

#define DCNC_SUBTYPE_16CHANNEL 0x03

#define DCNC_SUBTYPE_32CHANNEL 0x04

#define DCNC_SUBTYPE_4CHANNEL 0x01

#define DCNC_SUBTYPE_8CHANNEL 0x02

#define DCNC_SUBTYPE_AAEX 0x01

#define DCNC_SUBTYPE_ACTIVE_DDB 0x01

#define DCNC_SUBTYPE_CIN 0x03

#define DCNC_SUBTYPE_CONCENTUS 0x00

#define DCNC_SUBTYPE_DAEX 0x02

#define DCNC_SUBTYPE_DESK 0x00

#define DCNC_SUBTYPE_DISC 0x03

#define DCNC_SUBTYPE_DISC_DUAL 0x04

#define DCNC_SUBTYPE_FLUSH 0x01

#define DCNC_SUBTYPE_FLUSH_DUAL 0x02

#define DCNC_SUBTYPE_PASSIVE 0x00

#define DCNC_SUBTYPE_PASSIVE_DDB 0x00

DCN Next Generation Open Interface Release 4.1 en | 204

Bosch Security Systems | 2013 March

#define DCNC_SUBTYPE_RS232 0x02

#define DCNC_SUBTYPE_VOTING 0x09

#define DCNC_TYPE_AMBIENT_MIC 0x50

#define DCNC_TYPE_CHAIRMAN 0x10

#define DCNC_TYPE_CHANNELSELECTOR 0x80

#define DCNC_TYPE_DDB 0x70

#define DCNC_TYPE_DELEGATE 0x00

#define DCNC_TYPE_ENTRANCE 0x30

#define DCNC_TYPE_EXIT 0x40

#define DCNC_TYPE_INTERPRETER 0x60

#define DCNC_UNASSIGNED_UNIT 0xFFFF

#define DCNC_UNASSIGNED_UNIT ((UNITID)0xFFFF)

#define DCNC_UNIT_2000_CHAIRMAN (DCNC_TYPE_CHAIRMAN | DCNC_SUBTYPE_CONCENTUS)

#define DCNC_UNIT_2000_DELEGATE (DCNC_TYPE_DELEGATE | DCNC_SUBTYPE_CONCENTUS)

#define DCNC_UNIT_AMBIENT_MIC (DCNC_TYPE_AMBIENT_MIC)

#define DCNC_UNIT_AUDIO_IO (DCNC_TYPE_INTERPRETER | DCNC_SUBTYPE_AAEX)

#define DCNC_UNIT_AUDIO_IO_DIGITAL (DCNC_TYPE_INTERPRETER | DCNC_SUBTYPE_DAEX)

#define DCNC_UNIT_COBRANET (DCNC_TYPE_INTERPRETER | DCNC_SUBTYPE_CIN)

#define DCNC_UNIT_DATA_COMM (DCNC_TYPE_DDB | DCNC_SUBTYPE_ACTIVE_DDB)

#define DCNC_UNIT_DATA_COMM_RS232 (DCNC_TYPE_DDB | DCNC_SUBTYPE_RS232)

#define DCNC_UNIT_DISC_CHAIRMAN (DCNC_TYPE_CHAIRMAN | DCNC_SUBTYPE_DISC)

#define DCNC_UNIT_DISC_DELEGATE (DCNC_TYPE_DELEGATE | DCNC_SUBTYPE_DISC)

#define DCNC_UNIT_DISC_DELEGATE_DUAL (DCNC_TYPE_DELEGATE | DCNC_SUBTYPE_DISC_DUAL)

#define DCNC_UNIT_DUAL_MIC (DCNC_TYPE_DELEGATE | DCNC_SUBTYPE_FLUSH_DUAL)

#define DCNC_UNIT_ENTRANCE (DCNC_TYPE_ENTRANCE)

#define DCNC_UNIT_EXIT (DCNC_TYPE_EXIT)

DCN Next Generation Open Interface Release 4.1 en | 205

Bosch Security Systems | 2013 March

#define DCNC_UNIT_FLUSH_CHR_NODISPLAY (DCNC_TYPE_CHAIRMAN| DCNC_SUBTYPE_FLUSH)

#define DCNC_UNIT_FLUSH_DEL_NODISPLAY (DCNC_TYPE_DELEGATE| DCNC_SUBTYPE_FLUSH)

#define DCNC_UNIT_INTEGRUS16 (DCNC_TYPE_CHANNELSELECTOR | DCNC_SUBTYPE_16CHANNEL)

#define DCNC_UNIT_INTEGRUS32 (DCNC_TYPE_CHANNELSELECTOR | DCNC_SUBTYPE_32CHANNEL)

#define DCNC_UNIT_INTEGRUS4 (DCNC_TYPE_CHANNELSELECTOR | DCNC_SUBTYPE_4CHANNEL)

#define DCNC_UNIT_INTEGRUS8 (DCNC_TYPE_CHANNELSELECTOR | DCNC_SUBTYPE_8CHANNEL)

#define DCNC_UNIT_NG_INTERPRETER (DCNC_TYPE_INTERPRETER | DCNC_SUBTYPE_DESK)

#define DCNC_UNIT_VOTING (DCNC_TYPE_DELEGATE | DCNC_SUBTYPE_VOTING)

#define DCNC_VER_DEFAULT 0xFF /* Unit uses Default language */

#define DCNC_VER_ENGLISH 0

#define DCNC_VER_FRENCH 1

#define DCNC_VER_GERMAN 2

#define DCNC_VER_ITALIAN 3

#define DCNC_VER_SIXTH 5 /* Depending on downloaded OMF-file */

#define DCNC_VER_SPANISH 4

#define IC_C_CLEAR_LINKS (MKWORD(5,DCNC_APP_IC))

#define IC_C_CLOSE_IC_APP (MKWORD(2,DCNC_APP_IC))

#define IC_C_CONN_BREAK 7

#define IC_C_CONNECTED 6

#define IC_C_DAILING 10

#define IC_C_IDLE 1

#define IC_C_NO_OPER 2

#define IC_C_NO_REQ 8

#define IC_C_NOT_PRESENT 0

#define IC_C_RECEIVING 9

#define IC_C_RETURN 5

DCN Next Generation Open Interface Release 4.1 en | 206

Bosch Security Systems | 2013 March

#define IC_C_SET_LINKS (MKWORD(3,DCNC_APP_IC))

#define IC_C_START_IC_APP (MKWORD(1,DCNC_APP_IC))

#define IC_C_UNASSIGNED_UNIT 0xFFFF

#define IC_MAX_LINKS_IN_RFC 512

#define IC_UPD_AVAILABLE_LINES (MKWORD(6,DCNC_APP_IC))

#define IC_UPD_CONNECTION_INFO (MKWORD(8,DCNC_APP_IC))

#define IC_UPD_INCOMING_CALL (MKWORD(9,DCNC_APP_IC))

#define IC_UPD_OPERATOR_STATE (MKWORD(7,DCNC_APP_IC))

#define IN_C_ASSIGN_UNIT (MKWORD(74,DCNC_APP_IN))

#define IN_C_BOOTH_UPDATE (MKWORD(37,DCNC_APP_IN))

#define IN_C_CCU_CONFIG (MKWORD(2,DCNC_APP_IN))

#define IN_C_CHAN_STATUS (MKWORD(1,DCNC_APP_IN))

#define IN_C_CHANNEL_UPDATE (MKWORD(41,DCNC_APP_IN))

#define IN_C_CUS_LANG_LIST_1_ID 4

#define IN_C_CUS_LANG_LIST_2_ID 5

#define IN_C_CUS_LANG_LIST_3_ID 6

#define IN_C_DEF_LANG 1

#define IN_C_DESK_UPDATE (MKWORD(36,DCNC_APP_IN))

#define IN_C_DOWNLOAD_LANGLIST (MKWORD(50,DCNC_APP_IN))

#define IN_C_ENG_LANG_LIST_ID 1

#define IN_C_FLASHING_MIC_ON (MKWORD(3,DCNC_APP_IN))

#define IN_C_FLOOR_DISTRIBUTION (MKWORD(4,DCNC_APP_IN))

#define IN_C_FR_LANG_LIST_ID 2

#define IN_C_GET_FLOOR_DIST (MKWORD(53,DCNC_APP_IN))

#define IN_C_GET_HELP_SIGN (MKWORD(71,DCNC_APP_IN))

#define IN_C_GET_SPEAKSLOWLY_SIGN (MKWORD(69,DCNC_APP_IN))

DCN Next Generation Open Interface Release 4.1 en | 207

Bosch Security Systems | 2013 March

#define IN_C_HELP_SIGN (MKWORD(7,DCNC_APP_IN))

#define IN_C_INTERLOCK 2

#define IN_C_LANGUAGE_LIST (MKWORD(5,DCNC_APP_IN))

#define IN_C_LOAD_INT_DB (MKWORD(40,DCNC_APP_IN))

#define IN_C_NOMORE_CHANNELS 255

#define IN_C_NONEMODE 0

#define IN_C_ORG_LANG_LIST_ID 3

#define IN_C_OVERRIDE 1

#define IN_C_OVERRIDE_ON_B_ONLY 3

#define IN_C_SET_FLASH_MIC_ON (MKWORD(51,DCNC_APP_IN))

#define IN_C_SET_FLOOR_DIST (MKWORD(52,DCNC_APP_IN))

#define IN_C_SET_HELP_SIGN (MKWORD(70,DCNC_APP_IN))

#define IN_C_SET_SPEAKSLOWLY_SIGN (MKWORD(68,DCNC_APP_IN))

#define IN_C_SIGNAL_CCU (MKWORD(38,DCNC_APP_IN))

#define IN_C_SPEAKSLOWLY_SIGN (MKWORD(6,DCNC_APP_IN))

#define IN_C_STANDALONE 0

#define IN_C_START_IN_APP (MKWORD(56,DCNC_APP_IN))

#define IN_C_START_MON_IN (MKWORD(54,DCNC_APP_IN))

#define IN_C_STOP_IN_APP (MKWORD(57,DCNC_APP_IN))

#define IN_C_STOP_MON_IN (MKWORD(55,DCNC_APP_IN))

#define IN_C_UNASSIGN_UNIT (MKWORD(77,DCNC_APP_IN))

#define IN_C_UPDATE_LCK (MKWORD(39,DCNC_APP_IN))

#define IN_C_UPDATE_LOCK (MKWORD(73,DCNC_APP_IN))

#define IN_C_WITHPC 1

#define MKWORD(lb,hb) ((WORD)(((WORD)(hb))<<8) | (WORD)(lb)))

#define LD_C_CLEAR_DISPLAY_NR (MKWORD(11,DCNC_APP_LD))

#define LD_C_DISPLAY_FOUR 3

DCN Next Generation Open Interface Release 4.1 en | 208

Bosch Security Systems | 2013 March

#define LD_C_DISPLAY_ONE 0

#define LD_C_DISPLAY_THREE 2

#define LD_C_DISPLAY_TWO 1

#define LD_C_MAX_NR_OF_DISPLAY_LINES 10

#define LD_C_MD_FLAG_DISPLAY 0x2

#define LD_C_MM_FLAG_DISPLAY 0x4

#define LD_C_SEND_ANUM_DATA (MKWORD(7,DCNC_APP_LD))

#define LD_C_START_LD_APP (MKWORD(12,DCNC_APP_LD))

#define LD_C_STOP_LD_APP (MKWORD(13,DCNC_APP_LD))

#define LD_C_STORE_DISPLAY_SETTING (MKWORD(14,DCNC_APP_LD))

#define LD_C_VT_FLAG_DISPLAY 0x1

#define MAX_CARD_CODE 999999999

#define MAX_CARD_CODE 999999999

#define MAX_VOTE_WEIGTH 99999999

#define MD_C_ALL_LEDS_OFF 0x0

#define MD_C_AUX_LED_CONTROL (MKWORD(4,DCNC_APP_MD))

#define MD_C_AUXILIARY_BUTTON 0

#define MD_C_CLEAR_MESSAGE_ON_UNITS (MKWORD(1,DCNC_APP_MD))

#define MD_C_EXTERNAL_PRESENT_CONTACT 3

#define MD_C_HELP_BUTTON 2

#define MD_C_IN_NOTEBOOK_LED 0x1

#define MD_C_MICRO_LED 0x2

#define MD_C_RCV_DELEGATE 0

#define MD_C_RCV_HALL 3

#define MD_C_RCV_INTERPRETER 2

#define MD_C_REQ_BUTTON_ON_OFF (MKWORD(10,DCNC_APP_MD))

DCN Next Generation Open Interface Release 4.1 en | 209

Bosch Security Systems | 2013 March

#define MD_C_RTS_LED 0x4

#define MD_C_SEND_MESSAGE_TO_UNITS (MKWORD(0,DCNC_APP_MD))

#define MD_C_SPEAKSLOWLY_BUTTON 1

#define MD_C_START_MON_MD (MKWORD(2,DCNC_APP_MD))

#define MD_C_STOP_MON_MD (MKWORD(3,DCNC_APP_MD))

#define MDSC_COMMUNICATION_PARAMS 15

#define MDSC_NAK 2

#define MDSC_NOTIFY 5

#define MDSC_REMOTEPROCEDURE_REQ 3

#define MDSC_REMOTEPROCEDURE_RSP 4

#define MESSAGETYPE_OIP_KeepAlive 0x00447027

#define MESSAGETYPE_OIP_ResponseProtocolError 0x00447020

#define MKWORD(LSB,MSB) ((WORD)(((WORD)(MSB)<<8) | (WORD)(LSB)))

#define MM_C_ATTENTION_OFF 0

#define MM_C_ATTENTION_TONE1 1

#define MM_C_ATTENTION_TONE2 2

#define MM_C_ATTENTION_TONE3 3

#define MM_C_CHAIR_MICS_ON (MKWORD(2,DCNC_APP_MM))

#define MM_C_CHAIRMAN_NO_AC 6 /* Chairman exclude from Access Control */

#define MM_C_CR_ADD_ON_PC (MKWORD(23,DCNC_APP_MM))

#define MM_C_CR_CLEAR_ON_PC (MKWORD(22,DCNC_APP_MM))

#define MM_C_CR_GET (MKWORD(66,DCNC_APP_MM))

#define MM_C_CR_REMOVE (MKWORD(64,DCNC_APP_MM))

#define MM_C_CR_REMOVE_ON_PC (MKWORD(24,DCNC_APP_MM))

#define MM_C_CR_REPLACE_ON_PC (MKWORD(25,DCNC_APP_MM))

#define MM_C_CS_ADD_ON_PC (MKWORD(27,DCNC_APP_MM))

DCN Next Generation Open Interface Release 4.1 en | 210

Bosch Security Systems | 2013 March

#define MM_C_CS_CLEAR_ON_PC (MKWORD(26,DCNC_APP_MM))

#define MM_C_CS_GET (MKWORD(68,DCNC_APP_MM))

#define MM_C_CS_REMOVE (MKWORD(67,DCNC_APP_MM))

#define MM_C_CS_REMOVE_ON_PC (MKWORD(28,DCNC_APP_MM))

#define MM_C_DELEGATE_WITH_OVERRIDE 2

#define MM_C_DELEGATE_WITH_PUSHTOTALK 5

#define MM_C_DELEGATE_WITH_REQ_LIST 1

#define MM_C_DELEGATE_WITH_VOICE 3

#define MM_C_GET_SETTINGS (MKWORD(32,DCNC_APP_MM))

#define MM_C_GET_SETTINGS (MKWORD(32,DCNC_APP_MM))

#define MM_C_KEY_NO_AC 7 /* Button Activated Delegate excluded from Access Control */

#define MM_C_LAST_MINUTE_WARNING (MKWORD(60,DCNC_APP_MM))

#define MM_C_MICRO_ON_OFF (MKWORD(1,DCNC_APP_MM))

#define MM_C_NBK_CLEAR (MKWORD(44,DCNC_APP_MM))

#define MM_C_NBK_CLEAR_ON_PC (MKWORD(10,DCNC_APP_MM))

#define MM_C_NBK_GET (MKWORD(43,DCNC_APP_MM))

#define MM_C_NBK_REMOVE (MKWORD(45,DCNC_APP_MM))

#define MM_C_NBK_REMOVE_ON_PC (MKWORD(11,DCNC_APP_MM))

#define MM_C_NBK_SET (MKWORD(42,DCNC_APP_MM))

#define MM_C_NBK_SET_ON_PC (MKWORD(9,DCNC_APP_MM))

#define MM_C_OPERATOR_NO_AC 8/* Operator Activated Delegate excluded from Access Control */

#define MM_C_OPERATOR_WITH_COMMENT_LIST 4

#define MM_C_OPERATOR_WITH_REQ_LIST 0

#define MM_C_PC_MIC_NONE 3

#define MM_C_PC_MIC_OFF 2

#define MM_C_PC_MIC_ON 1

DCN Next Generation Open Interface Release 4.1 en | 211

Bosch Security Systems | 2013 March

#define MM_C_PC_PRIO_NONE 3

#define MM_C_PC_PRIO_OFF 2

#define MM_C_PC_PRIO_ON 1

#define MM_C_RTS_APPEND (MKWORD(62,DCNC_APP_MM))

#define MM_C_RTS_CLEAR (MKWORD(38,DCNC_APP_MM))

#define MM_C_RTS_CLEAR_ON_PC (MKWORD(5,DCNC_APP_MM))

#define MM_C_RTS_FIRST_ON_PC (MKWORD(20,DCNC_APP_MM))

#define MM_C_RTS_GET (MKWORD(37,DCNC_APP_MM))

#define MM_C_RTS_INSERT (MKWORD(40,DCNC_APP_MM))

#define MM_C_RTS_INSERT_ON_PC (MKWORD(7,DCNC_APP_MM))

#define MM_C_RTS_REMOVE (MKWORD(39,DCNC_APP_MM))

#define MM_C_RTS_REMOVE_ON_PC (MKWORD(6,DCNC_APP_MM))

#define MM_C_RTS_REPLACE_ON_PC (MKWORD(8,DCNC_APP_MM))

#define MM_C_RTS_SET (MKWORD(36,DCNC_APP_MM))

#define MM_C_RTS_SET_ON_PC (MKWORD(4,DCNC_APP_MM))

#define MM_C_SET_ACTIVE_MICS (MKWORD(53,DCNC_APP_MM))

#define MM_C_SET_ACTIVE_MICS_ON_PC (MKWORD(19,DCNC_APP_MM))

#define MM_C_SET_MIC_OPER_MODE (MKWORD(52,DCNC_APP_MM))

#define MM_C_SET_MIC_OPER_MODE_ON_PC (MKWORD(18,DCNC_APP_MM))

#define MM_C_SET_MICRO_ON_OFF (MKWORD(34,DCNC_APP_MM))

#define MM_C_SET_SETTINGS (MKWORD(33,DCNC_APP_MM))

#define MM_C_SET_SETTINGS (MKWORD(33,DCNC_APP_MM))

#define MM_C_SET_SETTINGS_ON_PC (MKWORD(21,DCNC_APP_MM))

#define MM_C_SET_SPEECHTIME_SETTINGS (MKWORD(59,DCNC_APP_MM))

#define MM_C_SHIFT (MKWORD(35,DCNC_APP_MM))

#define MM_C_SHIFT_CR (MKWORD(65,DCNC_APP_MM))

DCN Next Generation Open Interface Release 4.1 en | 212

Bosch Security Systems | 2013 March

#define MM_C_SPK_APPEND (MKWORD(48,DCNC_APP_MM))

#define MM_C_SPK_APPEND_ON_PC (MKWORD(14,DCNC_APP_MM))

#define MM_C_SPK_CLEAR (MKWORD(47,DCNC_APP_MM))

#define MM_C_SPK_CLEAR_ON_PC (MKWORD(13,DCNC_APP_MM))

#define MM_C_SPK_GET (MKWORD(46,DCNC_APP_MM))

#define MM_C_SPK_INSERT_ON_PC (MKWORD(16,DCNC_APP_MM))

#define MM_C_SPK_REMOVE (MKWORD(49,DCNC_APP_MM))

#define MM_C_SPK_REMOVE_ON_PC (MKWORD(15,DCNC_APP_MM))

#define MM_C_SPK_REPLACE_ON_PC (MKWORD(17,DCNC_APP_MM))

#define MM_C_SPK_SET_ON_PC (MKWORD(12,DCNC_APP_MM))

#define MM_C_START_MM (MKWORD(30,DCNC_APP_MM))

#define MM_C_START_MON_MM (MKWORD(69,DCNC_APP_MM))

#define MM_C_STOP_MM (MKWORD(31,DCNC_APP_MM))

#define MM_C_STOP_MON_MM (MKWORD(70,DCNC_APP_MM))

#define MM_C_TIME_FINISHED_WARNING (MKWORD(61,DCNC_APP_MM))

#define MM_C_TIMER_ON_OFF (MKWORD(3,DCNC_APP_MM))

#define MM_C_VCHAIR_NO_AC 10 /* Voice Activated Chairman excluded from Access Control */

#define MM_C_VIP_CHAIRMAN 1 /* Chairman */

#define MM_C_VIP_KEY 2 /* Delegate set as Button Activated */

#define MM_C_VIP_OPERATOR 3 /* Delegate set as Operator activated */

#define MM_C_VIP_PTT 12 /* Delegate as push to talk notebooker */

#define MM_C_VIP_PTT_NO_AC 14 /* Delegate as push to talk notebooker excluded from access control */

#define MM_C_VIP_PTTCHAIRMAN 11 /* Chairman as push to talk notebooker */

#define MM_C_VIP_PTTCHAIRMAN_NO_AC 13 /* Chairman as push to talk notebooker excluded from access control */

#define MM_C_VIP_VCHAIR 5 /* Chairman set as Voice activated */

#define MM_C_VIP_VOICE 4 /* Delegate set as Voice activated */

DCN Next Generation Open Interface Release 4.1 en | 213

Bosch Security Systems | 2013 March

#define MM_C_VOICE_NO_AC 9 /* Voice Activated Delegate excluded from Access Control */

#define RSMC_RSP_COMMUNICATION_PARAMS 0x0002

#define RSMC_SET_COMMUNICATION_PARAMS 0x0001

#define SC_C_BATTERY_INFO_COND MKWORD(45,DCNC_APP_SC)

#define SC_C_BATTERY_INFO_REQ MKWORD(40,DCNC_APP_SC)

#define SC_C_BATTERY_INFO_SERIAL MKWORD(44,DCNC_APP_SC)

#define SC_C_BATTERY_STATUS MKWORD(43,DCNC_APP_SC)

#define SC_C_BATTERY_STATUS_REQ MKWORD(39,DCNC_APP_SC)

#define SI_C_CARRIER_BAND_1 0

#define SI_C_CARRIER_BAND_2 1

#define SI_C_CARRIER_BAND_3 2

#define SC_C_CCU_MODE_CHANGE MKWORD(16,DCNC_APP_SC)

#define SC_C_CCU_REBOOT MKWORD(15,DCNC_APP_SC)

#define SC_C_CHECK_LINK MKWORD(18,DCNC_APP_SC)

#define SC_C_CLUSTER_MAX 1500

#define SC_C_CONNECT_SLAVE_CCU MKWORD(13,DCNC_APP_SC)

#define SC_C_CONNECT_UNIT MKWORD(9,DCNC_APP_SC)

#define SC_C_DCN_CCU 1

#define SC_C_DCN_CCUB 2

#define SC_C_DCN_CCUB2 4

#define SC_C_DCN_CCU2 3

#define SC_C_DISCONNECT_SLAVE_CCU MKWORD(14,DCNC_APP_SC)

#define SC_C_DISCONNECT_UNIT MKWORD(10,DCNC_APP_SC)

#define SC_C_ENCRYPTION_ENABLED MKWORD(65,DCNC_APP_SC)

#define SC_C_EXTENDED 0x02

#define SC_C_GET_CCU_CONFIG MKWORD(12,DCNC_APP_SC)

#define SC_C_GET_CCU_CONFIG_PROPERTY MKWORD(51,DCNC_APP_SC)

#define SC_C_GET_CCU_VERSIONINFO MKWORD(6,DCNC_APP_SC)

#define SC_C_GET_ENCRYPTION_ENABLED MKWORD(64,DCNC_APP_SC)

#define SC_C_GET_SLAVE_NODES MKWORD(54,DCNC_APP_SC)

#define SC_C_GET_UNIT_IDS MKWORD(55,DCNC_APP_SC)

#define SC_C_LOW_BATTERY MKWORD(68,DCNC_APP_SC)

#define SC_C_LOW_BATTERY_REQ MKWORD(69,DCNC_APP_SC)

DCN Next Generation Open Interface Release 4.1 en | 214

Bosch Security Systems | 2013 March

#define SC_C_MASTER 0x10

#define SC_C_MAX_HARDWARE_INFO 50

#define SC_C_MAX_SOFTWARE_INFO 29

#define SC_C_MAX_VERSION_LENGTH 50

#define SC_C_MULTITRUNC 0x08

#define SI_C_NETWORK_MODE_OFF 2

#define SI_C_NETWORK_MODE_ON 0

#define SI_C_NETWORK_MODE_SLEEP 1

#define SI_C_NETWORK_MODE_SUBSCRIPTION 3

#define SI_C_POWERLEVEL_HIGH 3

#define SI_C_POWERLEVEL_LOW 1

#define SI_C_POWERLEVEL_MEDIUM 2

#define SI_C_POWERLEVEL_OFF 0

#define SC_C_REQ_SERIAL_NR MKWORD(53,DCNC_APP_SC)

#define SC_C_SERIAL_NR MKWORD(56,DCNC_APP_SC)

#define SC_C_SET_ENCRYPTION_ENABLED MKWORD(63,DCNC_APP_SC)

#define SC_C_SIGNAL_QUALITY MKWORD(47,DCNC_APP_SC)

#define SC_C_SIGNAL_QUALITY_REQ MKWORD(42,DCNC_APP_SC)

#define SC_C_SIGNAL_STATUS MKWORD(46,DCNC_APP_SC)

#define SC_C_SIGNAL_STATUS_REQ MKWORD(41,DCNC_APP_SC)

#define SC_C_SINGLETRUNC 0x04

#define SC_C_SLAVE 0x20

#define SC_C_STANDALONE 0x01

#define SC_C_START_APP MKWORD(7,DCNC_APP_SC)

#define SC_C_STOP_APP MKWORD(8,DCNC_APP_SC)

#define SC_C_UNIT_SIGNAL_QUALITY MKWORD(58,DCNC_APP_SC)

#define SC_C_UNIT_SIGNAL_QUALITY_REQ MKWORD(57,DCNC_APP_SC)

#define SI_C_DEINITIALIZE_ALL MKWORD(30,DCNC_APP_SI)

#define SI_C_FRAUD 2

#define SI_C_GET_EXT_CONTACT MKWORD(14,DCNC_APP_SI)

#define SI_C_GET_MICROPHONE_GAIN MKWORD(16,DCNC_APP_SI)

#define SI_C_GET_NETWORK_MODE MKWORD(22,DCNC_APP_SI)

DCN Next Generation Open Interface Release 4.1 en | 215

Bosch Security Systems | 2013 March

#define SI_C_GET_OPERATION_MODE MKWORD(31,DCNC_APP_SI)

#define SI_C_GET_WAP_SETTINGS MKWORD(18,DCNC_APP_SI)

#define SI_C_GET_WIRELESS_SETTINGS MKWORD(20,DCNC_APP_SI)

#define SI_C_GLOBAL_INSTALL_MODE 1

#define SI_C_MICROPHONE_GAIN MKWORD(33,DCNC_APP_SI)

#define SI_C_MICROPHONE_GAIN_RESET MKWORD(34,DCNC_APP_SI)

#define SI_C_NETWORK_MODE MKWORD(26,DCNC_APP_SI)

#define SI_C_NO_FUNCTION 0

#define SI_C_OPERATIONAL_INSTALL_MODE 2

#define SI_C_PRESENT 1

#define SI_C_REGISTER_UNIT MKWORD(9,DCNC_APP_SI)

#define SI_C_RESET_MICROPHONE_GAIN MKWORD(17,DCNC_APP_SI)

#define SI_C_SELECT_UNIT MKWORD(1,DCNC_APP_SI)

#define SI_C_SET_EXT_CONTACT MKWORD(13,DCNC_APP_SI)

#define SI_C_SET_MASTER_VOL MKWORD(10,DCNC_APP_SI)

#define SI_C_SET_MICROPHONE_GAIN MKWORD(15,DCNC_APP_SI)

#define SI_C_SET_NETWORK_MODE MKWORD(23,DCNC_APP_SI)

#define SI_C_SET_OPERATION_MODE MKWORD(32,DCNC_APP_SI)

#define SI_C_SET_WAP_SETTINGS MKWORD(19,DCNC_APP_SI)

#define SI_C_SET_WIRELESS_SETTINGS MKWORD(21,DCNC_APP_SI)

#define SI_C_START_INSTALL MKWORD(4,DCNC_APP_SI)

#define SI_C_START_MON_SI MKWORD(27,DCNC_APP_SI)

#define SI_C_STOP_INSTALL MKWORD(5,DCNC_APP_SI)

#define SI_C_STOP_MON_SI MKWORD(28,DCNC_APP_SI)

#define SI_C_UNSUBSCRIBE_REQ MKWORD(29,DCNC_APP_SI)

#define SI_C_WAP_SETTINGS MKWORD(24,DCNC_APP_SI)

#define SI_C_WIRELESS_SETTINGS MKWORD(25,DCNC_APP_SI)

#define UNITID WORD

#define VERSION_C_LENGTH 11

#define VT_C_100_AUTHORISED_VOTES 3

DCN Next Generation Open Interface Release 4.1 en | 216

Bosch Security Systems | 2013 March

#define VT_C_100_EXTERNAL_PRESENT 5

#define VT_C_100_PRESENT_KEY 1

#define VT_C_100_PRESENT_KEY_AND_FRAUD 4

#define VT_C_100_VALID_VOTES 2

#define VT_C_ATTENTION_TONE_1 1

#define VT_C_ATTENTION_TONE_2 2

#define VT_C_ATTENTION_TONE_3 3

#define VT_C_ATTENTION_TONE_OFF 0

#define VT_C_DOWNLOAD_SUBJECT (MKWORD(7,DCNC_APP_VT))

#define VT_C_GET_ATTENTION_TONE (MKWORD(24,DCNC_APP_VT))

#define VT_C_GET_RESULTS (MKWORD(12,DCNC_APP_VT))

#define VT_C_HOLD_VOTING (MKWORD(5,DCNC_APP_VT))

#define VT_C_INT_RES_INDIV 2

#define VT_C_INT_RES_INDIV_PC_ONLY 4

#define VT_C_INT_RES_NONE 0

#define VT_C_INT_RES_TOTAL 1

#define VT_C_INT_RES_TOTAL_PC_ONLY 3

#define VT_C_LED_SECRET_FLASH_ON 2

#define VT_C_LED_SECRET_ON_OFF 1

#define VT_C_LED_SHOWVOTE 0

#define VT_C_MAX_ANSWER_OPTIONS 25

#define VT_C_MAX_LEN_LEGEND 11

#define VT_C_MAX_LEN_SUBJECT 142

#define VT_C_MAX_RESULT_DELEGATE 2000

#define VT_C_MENU_123 5

#define VT_C_MENU_ABC 6

DCN Next Generation Open Interface Release 4.1 en | 217

Bosch Security Systems | 2013 March

#define VT_C_MENU_AUDIENCE_RESPONSE 4

#define VT_C_MENU_CBA 7

#define VT_C_MENU_FOR_AGAINST 3

#define VT_C_MENU_YES_NO 1

#define VT_C_MENU_YES_NO_ABSTAIN 2

#define VT_C_MENU_YES_NO_ABSTAIN_NPPV 8

#define VT_C_RESTART_VOTING (MKWORD(6,DCNC_APP_VT))

#define VT_C_RESULTSNOTIFY (MKWORD(23,DCNC_APP_VT))

#define VT_C_SET_ATTENTION_TONE (MKWORD(25,DCNC_APP_VT))

#define VT_C_SET_GLOBAL_SETTINGS (MKWORD(9,DCNC_APP_VT))

#define VT_C_SET_VOTINGPARAMS (MKWORD(10,DCNC_APP_VT))

#define VT_C_STANDALONE_VOTING 0

#define VT_C_START_APP (MKWORD(1,DCNC_APP_VT))

#define VT_C_START_ATTENTION_TONE (MKWORD(26,DCNC_APP_VT))

#define VT_C_START_VOTING (MKWORD(3,DCNC_APP_VT))

#define VT_C_STOP_APP (MKWORD(2,DCNC_APP_VT))

#define VT_C_STOP_VOTING (MKWORD(4,DCNC_APP_VT))

#define VT_C_VOTE_1 0x00

#define VT_C_VOTE_A 0x00

#define VT_C_VOTE_ABSTAIN 0x02

#define VT_C_VOTE_AGAINST 0x01

#define VT_C_VOTE_DOUBLE_MINUS 0x00

#define VT_C_VOTE_DOUBLE_PLUS 0x04

#define VT_C_VOTE_FOR 0x00

#define VT_C_VOTE_MINUS 0x01

#define VT_C_VOTE_NO 0x01

DCN Next Generation Open Interface Release 4.1 en | 218

Bosch Security Systems | 2013 March

#define VT_C_VOTE_NOT_VOTED 0xFE

#define VT_C_VOTE_NPPV 0x03

#define VT_C_VOTE_NULL 0x02

#define VT_C_VOTE_PLUS 0x03

#define VT_C_VOTE_UNASSIGNED 0xFF

#define VT_C_VOTE_YES 0x00

#define WAP_ENABLE_ENCRYPTION 0x02

#define WAP_ENABLE_LANGUAGE_DISTRIBUTION 0x01

#define FALSE 0

#define TRUE 1

DCN Next Generation Open Interface Release 4.1 en | 219

Bosch Security Systems | 2013 March

APPENDIX C. ERROR CODES
Responses returned upon a remote function request contain a error field (‘wError’). In this appendix
an overview is given of the possible errors and their values.

Remote Function Services Error code Value
(hex.)

 Explanation
RFSE_BADFUNCTIONID 10901

(0x2A95)
The remote function called is not registered by the Remote
Function Services. Either the function does not exist or the
CCU is operating in a wrong mode.

RFSE_ALLOCFAILED 10904
(0x2A98)

The requested data-area for the function response could not be
allocated. The CCU went out of memory during the remote
function call.

RFSE_NOACCESSPERMISSION 10907
(0x2A9B)

The remote function called is not authorized for use, meaning
no license key enabling use of the remote interface function is
present on the CCU.

IPME_INVALID_MESSAGELENGTH

4485152
(0x00447

020)
The overall message length of the data is too small (below 8
bytes) or too large (above 8000 bytes). Please not that this
error code is used only in conjunction with the
MESSAGETYPE_OIP_ResponseProtocolError message.

System Configuration Error code Value
(hex.)

 Explanation
SC_E_NOERROR 0 (0x00)

The execution of the remote function was successful.
SC_E_WRONG_PARAMETER 4106

(0x100A)
The value of a parameter passed in a function call is invalid (out
of range).

SC_E_UNIT_NOT_FOUND 4107
(0x100B)

The unit does not exist.
SC_E_UNIT_NOT_CONNECTED 4109

(0x100D)
The unit is not connected.

System Installation Error code Value
(hex.)

 Explanation
SI_E_NOERROR 0 (0x00)

The execution of the remote function was successful.
SI_E_INVALID_UNITTYPE 4353

(0x1101)
The selected unit represents no seat. For example the entry exit unit
and interpreter desks.

SI_E_ALREADY_STARTED 4354
(0x1102)

DCN Next Generation Open Interface Release 4.1 en | 220

Bosch Security Systems | 2013 March

System installation has already been started.
SI_E_NOT_IN_CONTROL 4355

(0x1103)
The remote function is not allowed, because this remote controller
has no control over the system installation.

SI_E_WRONG_PARAMETER 4356
(0x1104)

The value of a parameter passed in a function call is invalid (out of
range).

SI_E_NO_UNIT_SELECTED 4357
(0x1105)

No unit has been selected.
SI_E_NO_UNITS_FOUND 4368

(0x1110)
There could not be found any unit.

SI_E_UNIT_NOT_FOUND 4371
(0x1113)

The unit does not exist.

Database Query Services Error code Value
(hex.)

 Explanation
DB_E_NOERROR 0 (0x00)

The execution of the remote function was successful.
DB_E_SET_PINSIZE_FAILED 10401

(0x28A1)
Setting a new size for the PIN Code into the Delegate Database
failed.

DB_E_DELEGATE_LIST_TOO_BIG 10402
(0x28A2)

The wFillLevel parameter in DB_C_MAINT_CCU has a value larger
then DB_C_MAX_N_DL_DEL_REC.

DB_E_INSERT_DELEGATE_FAILED 10403
(0x28A3)

Inserting the current DB_T_PERDELEGATE structure into the
Delegate Database failed.

DB_E_UPDATE_DELEGATE_FAILED 10404
(0x28A4)

Updating the delegate database with the current
DB_T_PERDELEGATE structure failed.

DB_E_UPD_DEL_PIN_CHANGED 10405
(0x28A5)

Update failed because the PIN code changed.
DB_E_UPD_DEL_CARD_CHANGED 10406

(0x28A6)
Update failed because the card code is changed.

DB_E_UPD_DEL_UNIT_IN_USE 10407
(0x28A7)

Update of database failed because someone else is already using
the proposed default seat.

DB_E_PENDING_REQUEST 10408
(0x28A8)

Setting/updating the Delegate Database failed because a delegate
with a pending Request to Speak was tried to delete from the
database.

DCN Next Generation Open Interface Release 4.1 en | 221

Bosch Security Systems | 2013 March

Database Query Services Error code Value
(hex.)

 Explanation
DB_E_DELEGATE_DATA_BLOCKED 10409

(0x28A9)
Updating the delegate database with the current
DB_T_PERDELEGATE structure failed.

DB_E_NO_DATABASE 10410
(0x28AA)

The use of function DB_C_CCU_APPLY_ONE is not possible,
because currently there is no database present in the CCU.

DB_E_APP_NOT_STARTED 10411
(0x28AB)

The remote controller has not called the DB_C_START_APP yet.
Therefore any remote function call to access the database fails with
this error.

DB_E_INCONTROL_THIS_CHANNEL 10412
(0x28AC)

The database is already under control by this remote controller (on
the same channel). Probably you have called the
DB_C_START_APP function twice.

DB_E_INCONTROL_OTHER_CHANNEL 10413
(0x28AD)

The DB_C_START_APP function could not finish successfully
because the database is already controlled by another remote
controller using another channel.

DB_E_ILLEGAL_CONTROL_TYPE 10414
(0x28AE)

The control-type passed to the function DB_C_START_APP is not
within range of valid values (see appendix 0 for the correct control-
type values).

DB_E_NOT_INCONTROL 10415
(0x28AF)

The remote function is not allowed, because this remote controller
has no control over the delegate database.

DB_E_WRONG_PARAMETER 10417
(0x28B1)

Settings or a combination of settings is not correct.

Microphone Management Error code Value
 Explanation
MM_E_NOERROR 0

The execution of the remote function was successful.
MM_E_UNKNOWN_UNIT 2

The UnitId is unknown in the CCU.
MM_E_OPEN_CLOSE_FAILED 5

The internal database on the CCU was not able to update the total
use count for the MM application.

MM_E_UNIT_ALREADY_PRESENT 6
The unit to be added to the list (RTS or SPK) is already present in
that list.

MM_E_NOT_PRESENT 8
The record to search for in the list (Comment Request) is not
present in the list.

MM_E_UNIT_NOT_PRESENT 9
The unit to search for in the list (RTS or SPK) is not present in the
list.

DCN Next Generation Open Interface Release 4.1 en | 222

Bosch Security Systems | 2013 March

Microphone Management Error code Value
 Explanation
MM_E_NOT_IN_SPL_OR_NOB 15

You tried to turn off a microphone of a unit, which was not present in
either the speakers list or the notebook list.

MM_E_ILLEGAL_MAX_ACT_MICS 17
The number provided for the maximum number of active
microphones is illegal with respect to the current Operation Mode.
Valid value for the mode
MM_C_OPERATOR_WITH_COMMENT_LIST is 1. Valid values for
the mode MM_C_DELEGATE_WITH_VOICE are within the range
2..4 and for all other modes in the range 1...4.

MM_E_ILLEGAL_MIC_OPER_MODE 18
The function requested is illegal for the current operation mode. The
function is not executed.

MM_E_UNKNOWN_UNITID_AND_DELID 19
You have provided a RTS list entry with both elements (UnitId and
DelegateId) set to empty values (DBSC_EMPTY_UNIT,
DBSC_EMPTY_DELEGATE). At least one of the elements must be
defined to fulfill the function.

MM_E_DELETE_RTS_LIST_FAILED 21
A delete of a RTS list entry in the internal database failed. Probably
illegal values for either the elements UnitId or DelegateId are
passed.

MM_E_INSERT_RTS_LIST_FAILED 22
The CCU was not able to insert the RTS list entry into the internal
database. Probably illegal values for either the elements UnitId or
DelegateId are passed.

MM_E_RTS_LIST_FULL 24
The RTS list is full. No more RTS entries can be added using the
function MM_C_RTS_APPEND.

MM_E_RTS_LIST_CHANGED 25
During a reduction of the maximum length of the RTS list, the
database was unable to retrieve the last RTS list entry. The actual
length is not changed. To recover this error; clear the RTS list, set
the new RTS list length and set the new contents in the RTS list.

MM_E_RTS_LIST_EMPTY 26
The RTS list is empty; therefore the function cannot be fulfilled. E.g.
remove on a RTS list entry on an empty RTS list.

MM_E_ILLEGAL_MAX_RTS_LIST_LEN 27
The maximum length provided for the RTS list is out of range. Valid
values for the RTS list length are within the range 0..100.

MM_E_RTS_LIST_TOO_BIG 28
The RTS list provided is too big to store it. None of the RTS entries
provided is put into the RTS list and the old RTS list remains active.

MM_E_DELETE_SPEAKERS_LIST_FAILED 31
A delete of a SPK list entry in the internal database failed. Probably
an illegal value for the element UnitId is passed.

MM_E_INSERT_SPEAKERS_LIST_FAILED 32
The CCU was not able to insert the SPK list entry into the internal
database. Probably an illegal value for the element UnitId is passed.

MM_E_SPEAKERS_LIST_FULL 34
The SPK list is full. No more SPK entries can be added using the
function MM_C_SPK_APPEND.

MM_E_ILLEGAL_MICRO_TYPE 47
This unit is also present in the Notebook and has a microtype that is
not allowed in the speakers list.

MM_E_UNIT_NOT_CONNECTED 48

DCN Next Generation Open Interface Release 4.1 en | 223

Bosch Security Systems | 2013 March

Microphone Management Error code Value
 Explanation

The unit is not connected to the system (any more).
MM_E_UNITID_DELID_MISMATCH 49

The unit and delegate do not match with each other according to the
database on the CCU.

MM_E_NOT_IN_CONTROL 50
The remote function is not allowed, because this remote controller
has no control over the microphone management application.

MM_E_ILLEGAL_ATTENTION_TONE 54
The attention tone parameter has an illegal value.

Camera Control Error code Value (hex.)
 Explanation
CC_E_NOERROR 0 (0x00)

The execution of the remote function was successful.
CC_E_INCONTROL_THIS_CHANNEL 5377 (0x1501)

The CC application is already controlled by this remote controller
(on the same channel). Probably the
CC_C_START_CAMERA_APP is called for the second time.

CC_E_INCONTROL_OTHER_CHANNEL 5378 (0x1502)
The CC application is already controlled by another remote
controller (on another channel).

CC_E_NOT_INCONTROL 5379 (0x1503)
The remote controller does not control the application (did not call
CC_C_START_CAMERA_APP).

CC_E_INVALID_UNITID 5380 (0x1504)
A unit identifier passed as parameter in the function is invalid.

CC_E_INVALID_CAMERA_NUMBER 5381 (0x1505)
A camera number passed as parameter in the function is invalid.

CC_E_INVALID_PORT_OUT 5382 (0x1506)
Sending data to the connected camera equipment failed.

CC_E_INVALID_CONTROL_TYPE 5383 (0x1507)
The control type passed as a parameter in the function is invalid.

CC_E_INVALID_PARAMETER 5384 (0x1508)
A parameter passed in the function is invalid.

Simultaneous Interpretation Error code Value (hex.)
 Explanation
IN_E_NOERROR 0 (0x00)

The execution of the remote function was successful.

IN_E_UNKNOWN_INTSEAT 514 (0x202)

The combination Booth and Desk was not recognized as an
interpreter seat in the system.

IN_E_INTERLOCK_NOT_ALLOWED 528 (0x210)
The requested interlock mode is not allowed in the current
configuration.

IN_E_INCONTROL_THIS_CHANNEL 529 (0x211)
The IN application is already controlled by this remote controller (on
the same channel). Probably the IN_C_START_IN_APP is called for
the second time.

IN_E_INCONTROL_OTHER_CHANNEL 530 (0x212)
The IN_C_START_IN_APP function could not finish because the IN
application is already controlled by another remote controller using

DCN Next Generation Open Interface Release 4.1 en | 224

Bosch Security Systems | 2013 March

Simultaneous Interpretation Error code Value (hex.)
 Explanation

another channel.
IN_E_NOT_IN_CONTROL 531 (0x213)

The IN_C_STOP_IN_APP function cannot function, because this
remote controller does not control the IN application.

IN_E_WRONG_PARAMETER 532 (0x214)
The value of a parameter passed in a function call is invalid (out of
range).

IN_E_APP_NOT_STARTED 533 (0x215)
Indicates that no remote controller has taken over the IN application
control from the CCU (and therefore the remote controller is not
allowed to call the remote function).

IN_E_INCORRECT_DESK_CONFIG 534 (0x216)
Indicates that the desk configuration is incorrect, i.e. the mapping of
unit identifiers to booth and desk numbers passed in the remote
function does not correspond to the actual mapping inside the CCU.

IN_E_UNKNOWN_BOOTH_NR 535 (0x217)
Booth is not known in the system.

Voting Error code Value
 Explanation
VT_E_NOERROR 0

The execution of the remote function was successful.
VT_E_VOTE_RUNNING 276

Indication that a vote round is running on this moment.
VT_E_VOTE_NOT_RUNNING 277

No vote round running on this moment.
VT_E_VOTE_NOT_ON_HOLD 278

No vote round on hold on this moment.
VT_E_APP_NOT_STARTED 286

Indicate that no remote controller has taken over the voting control
from the CCU.

VT_E_WRONG_PARAMETER 287
Settings or a combination of settings is not correct.

VT_E_INCONTROL_OTHER_CHANNEL 288
The VT_C_START_APP function could not finish because the
voting application is already controlled by another remote controller
using another channel.

VT_E_INCONTROL_THIS_CHANNEL 289
The voting application is already controlled by this remote controller
(on the same channel). Probably you have called the
VT_C_START_APP function twice.

VT_E_NOT_IN_CONTROL 290
The VT_C_STOP_APP function cannot function, because this
remote controller has no control for the voting application.

VT_E_NO_RESULTS 291
The collection of results using the remote function
VT_C_GET_RESULTS failed. This can happen if never a vote-
round was started or the interim-result-setting was set to
VT_C_INT_RES_NONE.

VT_E_NO_NAMESFILE 292
The combination of settings passed to the remote function requires
that a delegate-database is downloaded into the CCU. Refer to
§8.1.6 for the possible settings when no delegate-database is
present.

DCN Next Generation Open Interface Release 4.1 en | 225

Bosch Security Systems | 2013 March

Attendance Registration Error code Value: Dec Hex
 Explanation
AT_E_NOERROR 0 0x000

The execution of the remote function was successful.
AT_E_APP_NOT_STARTED 2305 0x901

The remote controller has not called the AT_C_START_AT_APP
yet. Therefore any remote function call to the attendance
registration application fails with this error.

AT_E_STORE_SETTING_FAILED 2306 0x902
Settings or a combination of settings is not correct.

AT_E_HANDLE_IDENTIFICATION_FAILED 2314 0x90A
The eventId, the ID-card code and/or length of PIN-code are not
correct to handle the requested action.

AT_E_SETTING_NOT_CORRECT 2315 0x90B
Settings are not correct to handle the requested action.

AT_E_INCONTROL_OTHER_CHANNEL 2316 0x90C
The AT_C_START_AT_APP function could not finish successfully
because the attendance application is already controlled by another
remote controller using another channel.

AT_E_INCONTROL_THIS_CHANNEL 2317 0x90D
The attendance application is already under control by this remote
controller (on the same channel). Probably you have called the
AT_C_START_AT_APP function twice.

AT_E_INMONITOR_THIS_CHANNEL 2318 0x90E
The attendance application is already monitored by this remote
controller (on the same channel). Probably you have called the
AT_C_START_AT_APP function twice.

AT_E_NOT_INCONTROL 2319 0x90F
The remote function is not allowed, because this remote controller
has no control over the attendance registration application.

AT_E_CHANGE_NOT_ALLOWED 2321 0x911
A change of setting (even if they are the same as the previous call)
is not allowed, because attendance registration and/or access
control is currently active. Or the setting is present contact
(AT_C_PRESENTCONTACT), but no external contact is configured
as present contact in SI (see SRS_SCSIINF)

AT_E_ACTIVATION_NOT_ALLOWED 2322 0x912
The settings made by the remote function AT_C_STORE_SETTING
are conflict with the activation or deactivation of attendance
registration and/or access control. See chapter 9 for more
information.

AT_E_ILLEGAL_CONTROL_TYPE 2333 0x91D
The control-type passed to the function AT_C_START_AT_APP is
not within range of valid values (see Appendix B Values of the
defines for the correct control-type values).

AT_E_ILLEGAL_EVENT 2334 0x91E
The event-type passed to the function
AT_C_HANDLE_IDENTIFICATION is not within range of valid
values (see Appendix B Values of the defines for the correct event
values).

AT_E_ILLEGAL_ARRAY_SIZE 2335 0x91F
The fill-level passed along with the function
AT_C_HANDLE_IDENTIFICATION exceeds the maximum array
size.

Text & Status Display Error code Value (hex.)
 Explanation
LD_E_NOERROR 0 (0x00)

DCN Next Generation Open Interface Release 4.1 en | 226

Bosch Security Systems | 2013 March

Text & Status Display Error code Value (hex.)
 Explanation

The execution of the remote function was successful.
LD_E_INCONTROL_THIS_CHANNEL 3074 (0xC02)

The LD application is already controlled by this remote controller (on
the same channel). Probably the LD_C_START_LD_APP is called
for the second time.

LD_E_INCONTROL_OTHER_CHANNEL 3075 (0xC03)
The LD application is already controlled by another remote controller
(on another channel).

LD_E_UNKNOWN_DISPLAY 3076 (0xC04)
The display id passed in the remote function is unknown (i.e. not in
the range LD_C_DISPLAY_ONE – LD_C_DISPLAY_FOUR).

LD_E_WRONG_PARAMETER 3077 (0xC05)
A parameter passed in the remote function has an invalid value.

LD_E_LINES_OVERFLOW 3078 (0xC06)
The total number of lines configured for MM display information
exceeds the maximum of
LD_C_MAX_NUMBER_OF_DISPLAY_LINES (i.e. the number of
speaker lines added tot the number of request-to-speak lines
exceeds LD_C_MAX_NUMBER_OF_DISPLAY_LINES).

LD_E_APP_NOT_STARTED 3079 (0xC07)
Indicates that no remote controller has taken over the LD application
control from the CCU (and therefore the remote controller is not
allowed to call the remote function).

Message Distribution Error code Value (hex.)
 Explanation
MD_E_NOERROR 0 (0x00)

The execution of the remote function was successful.
MD_E_NO_MORE_MESSAGES_ALLOWED 2576 (0xA10

The maximum number of messages is reached (maximum is 10).
Note that this holds for messages of type MD_C_RCV_DELEGATE
and of type MD_C_RCV_INTERPRETER; for the type
MD_C_RCV_HALL, only one message at a time is possible and a
new message overwrites the previous message. Messages can be
cleared by calling MD_C_CLEAR_MESSAGE_ON_UNITS with type
MD_C_RCV_DELEGATE or MD_C_RCV_INTERPRETER. Note
that there is only one queue of size 10, that holds whatever kind of
messages are sent (any mix of messages of type
MD_C_RCV_DELEGATE and MD_C_RCV_INTERPRETER is
possible). In order to completely empty the queue,
MD_C_CLEAR_MESSAGE_ON_UNITS must be called twice (once
messages of type MD_C_RCV_DELEGATE, and once for
messages of type MD_C_RCV_INTERPRETER).

MD_E_NO_AUX_BUTTON 2578 (0xA12
A function relating to the auxiliary button is called for a unit that does
not have an auxiliary button.

Intercom Error code Value
(hex)

 Explanation
IC_E_NOERROR 0

(0x00)
The execution of the remote function was successful.

IC_E_NO_AUDIO_CHANNELS 1796
(0x704)

There are no audio channels available for intercom.

DCN Next Generation Open Interface Release 4.1 en | 227

Bosch Security Systems | 2013 March

Intercom Error code Value
(hex)

 Explanation
IC_E_NO_OPERATOR 1797

(0x705)
There is no operator assigned.

IC_E_INCONTROL_THIS_CHANNEL 1810
(0x712)

The CCU is already in control with this channel.
IC_E_INCONTROL_OTHER_CHANNEL 1811

(0x713)
The CCU is already in control by another channel.

IC_E_WRONG_PARAMETER 1812
(0x714)

The value of a parameter passed in a function call is invalid (out of
range).

DCN Next Generation Open Interface Release 4.1 en | 228

Bosch Security Systems | 2013 March

APPENDIX D. EXAMPLES

D.1. System Configuration
In the examples below the remote functions and update notifications, that are defined in this
document as constant values for the wFnId parameter of the message (see chapter 2), are
presented as functions described in a ‘C’ syntax. The parameter structures of these functions are
according the input, output or notify structures described in the appropriate section.

For every function is assumed that the function will create his structure, transport the parameters to
the CCU and waits for the result information coming from the CCU.

For both the remote functions as the update notifications the same names are used as their identifier,
but without the constant mark “C” and using mixed case names. So, e.g. remote function
SC_C_CONNECT_UNIT shall be referenced as function as:

 SC_Connect_Unit (SC_T_UNIT_DATA tUnitData);

D.1.1. Assigning seats using global installation
This example shows how the remote controller can assign his seats to the unit-numbers present in
the conference hall.

Assumed is that the conference hall has a number of seats numbered starting with 1. For this
proposed installation one person must walk through the conference hall and press one of the soft-
keys on the units in order of the seats (starting with seat 1). On each unit a soft-key is only pressed
once.

For this seat assignment the global installation mode of the CCU will be used. Therefore we start with
activating that mode.

error = SI_Start_Install (SI_C_GLOBAL_INSTALL_MODE);

if (error != SI_E_NOERROR)

{

 /* do error handling */

}

After this function the CCU is in global installation mode, all displays are off and no applications are
running.

We now initialize the current seat and unit-number, assuming seat numbers are chosen to be purely
numeric:

wCurrentSeatNumber = 1;

The system is now ready to accept the key-presses on the units in order of the seats. When a soft-
key is pressed the CCU sends a notification. During the processing of that function we select the unit
where the key is pressed, and assign the current seat number to the provided unit number.

This result in the following function:

void SI_Register_Unit (SI_T_UNIT_STRUCT *tUnitStruct)

{

 /* First turn off the previous selected unit */

 /* */

 error = SI_Select_Unit (tUnitStruct->wUnitId, TRUE);

 if (error != SI_E_NOERROR)

 {

 /* do error handling */

 }

 /* assign the current seat to the unit */

 MyAssignSeat (wCurrentSeatNumber, tUnitStruct->wUnitId);

 /* Increment to the next seat */

 wCurrentSeatNumber = wCurrentSeatNumber + 1;

 /* and save the unitId to turn off during the assignment of the next seat */

DCN Next Generation Open Interface Release 4.1 en | 229

Bosch Security Systems | 2013 March

 /* */

}

Note that this function is only an example to shown how the interaction between update notifications
and remote functions can appear. For instance, when you press a soft-key the second time, this
function will fail. Better is to look if the selected unit has already a seat assigned. If not, the assign
and increment, if assigned, just keep the assignment.

When done with all seats present in the conference hall, we can leave the global installation mode.
This is done using the following sequence:

/* first turn off the last selected unit */

/* */

error = SI_Stop_Install ();

if (error != SI_E_NOERROR)

{

 /* do error handling */

}

This ends the global seat assignment. The remote controller has now a complete list of all seats and
their corresponding unit-numbers.

D.1.2. Replacing defective units during operation
This example shows how the remote controller can assign a seat to a unit in the conference hall,
which is replaced by a new unit (due to failure of the old unit).

Assumed is that previously all units have been assigned a seat-number on the remote controller.
After detecting that a unit fails, the following actions are performed by the technical staff of the
conference hall:

1. The defective unit is removed from the system. Note that disconnecting the unit also may
disconnect other (chained) units.

2. A new unit is inserted into the unit-chain and connected to the system.

3. The new unit is de-initialized, and initialized again to be sure that the added unit has no
address conflict with other units.

During these actions the following notifications are reported to the remote controller (assumed is that
the application SC is registered by the CCU:

• Microphone off notifications if any of the disconnected units has their microphone on or
had a pending request (present in the Request To Speak list).

• SC_C_DISCONNECT_UNIT for all units in the chain disconnected. The remote controller
remembers these units to disable the functionality.

• SC_C_CONNECT_UNIT for all units connected. Most of the unit-numbers are known in
the disconnect-list and can be restored (e.g. the functionality will be enabled). The new
unit(s) connected to the system is not known.

For these units the remote controller must start the operational installation mode. The operational
installation mode is activated using the following remote function request:

error = SI_Start_Install (SI_C_OPERATIONAL_INSTALL_MODE);

if (error != SI_E_NOERROR)

{

 /* do error handling */

}

After this the CCU has enabled the operational installation mode. The remote controller can start the
sequence to assign the new unit-numbers to seats not yet assigned.

while (there are new units and unassigned seats)

{

 WORD wUnitId;

 wUnitId = First_new_unit_available;

 /* select the unit */

DCN Next Generation Open Interface Release 4.1 en | 230

Bosch Security Systems | 2013 March

 error = SI_Select_Unit (wUnitId, TRUE);

 if (error != SI_E_NOERROR)

 {

 /* do error handling */

 }

 /* Let the operater determine which seat should be assigned to the selected

 unit. Normally the operator will view which unit is flashing, checks the

 seat-number and pass the seat-number found to the remote controller.

 The seat-number is stored in the variable ‘wSeatNumber’

 */

 /* assign the current seat to the unit */

 MyAssignSeat (wSeatNumber, wUnitId);

 /* assignment finished, deselect the unit */

 error = SI_Select_Unit (wUnitId, FALSE);

 if (error != SI_E_NOERROR)

 {

 /* do error handling */

 }

}

After this sequence handling the newly added units are again assigned to seats. This also finished
the operational installation mode, so we can leave the installation mode.

error = SI_Stop_Install ();

if (error != SI_E_NOERROR)

{

 /* do error handling */

}

The remote controller can now continue with operation.

D.2. Microphone Management
In the example below the remote functions and update notifications, that are defined in this document
as constant values for the wFnId parameter of the message (see chapter 2), are presented as
functions described in a ‘C’ syntax. The parameter structures of these functions are according the
input, output or notify structures described in the appropriate section.

For every function is assumed that the function will create his structure, transport the parameters to
the CCU and waits for the result information coming from the CCU.

For both the remote functions as the update notifications the same names are used as their identifier,
but without the constant mark “C” and using mixed case names. So, e.g. remote function
MM_C_SET_SETTINGS shall be referenced as function as:

 MM_Set_Settings (MM_T_CCU_GLOBAL_SETTINGS tMMSettings);

D.2.1. Microphone Management Control
This example shows the minimum steps to be taken for controlling the MM application.

First we have to start the MM application inside the CCU.

WORD wNrOfInstances;

error = MM_Start_MM(&wNrOfInstances);

if (error != MM_E_NOERROR)

{

 /* do error handling */

}

else

{

 switch (wNrOfInstances)

 {

 case 0 : /* something went wrong with registering for remote interface

DCN Next Generation Open Interface Release 4.1 en | 231

Bosch Security Systems | 2013 March

 so, do error handling */

 break;

 case 1 : /* OK */

 break;

 default : /* 2 or more. This means there are more remote controllers

 identified by the CCU. Stop as many times as needed */

 WORD wNewNumber;

 do

 {

 MM_Stop_MM(&wNewNumber);

 } while (wNewNumber > 1);

 break;

 }

}

If there are no errors on starting the MM application the next thing we are interested in are the
settings. Assume that we want the system to operate in a Operator with RTS list mode, 4 active mics
and a maximum RTS list length of 50. The first thing to do is retrieve the current settings, then check
them against the wanted settings and, if they are not the same, set the new settings.

The results in the following control flow:

/* declare variables */

MM_T_CCU_GLOBAL_SETTINGS tMMSettings;

BOOLEAN bMustSend = FALSE;

/* retrieve the current settings */

MM_Get_Settings(&tMMSettings);

/* and check if they are what we want */

if (tMMSettings.wOperationMode != MM_C_OPERATOR_WITH_REQ_LIST)

{

 tMMSettings.wOperationMode = MM_C_OPERATOR_WITH_REQ_LIST;

 bMustSend = TRUE;

}

if (tMMSettings.wActiveMics != 4)

{

 tMMSettings.wActiveMics = 4);

 bMustSend = TRUE;

}

if (tMMSettings.wMaxRTSListLen != 50)

{

 tMMSettings.wMaxRTSListLen = 50;

 bMustSend = TRUE;

}

/* Set new settings if we have to */

if (bMustSend)

{

 error = MM_Set_Settings(&tMMSettings);

 if (error != MM_E_NOERROR)

 {

 /* do error handling */

 }

}

Setting new settings also results in an update notification, so the last thing to do is to check if our
settings are accepted by the CCU.

Therefore, we need the following function:

void MM_Set_Settings_On_Pc(MM_T_CCU_GLOBAL_SETTINGS tNotifiedSettings)

{

 BOOLEAN bIdentical = FALSE;

/* assume we have a user defined function to compare both settings structures */

 bIdentical = MyCompareSettings(tNotifiedSettings, tMMSettings);

DCN Next Generation Open Interface Release 4.1 en | 232

Bosch Security Systems | 2013 March

 if (bIdentical == FALSE)

 {

 /*

 If they are not the same:

 Either update your local settings with the CCU settings

 or try to set them again

 */

 }

}

Once the settings are known, we could retrieve the current notebook-, speakers- and RTS list and
wait for the updates to monitor the microphone status in the conference hall, or send remote
functions to influence that status.

When the congress is finished we must tell the CCU that we stopped monitoring the MM application,
using the following function:

WORD wNrOfInstances;

error = MM_Stop_MM(&wNrOfInstances);

if (error != MM_E_NOERROR)

{

 /* do error handling */

}

else

{

 switch (wNrOfInstances)

 {

 case 0 : /* OK */

 break;

 default : /* 1 or more. This means there are still remote controllers

 identified by the CCU. Stop as many times as needed */

 WORD wNewNumber;

 do

 {

 MM_Stop_MM(&wNewNumber);

 } while (wNewNumber != 0);

 break;

This ends controlling the MM application. The remote controller and CCU can now safely be switched
off.

D.3. Camera Control
In the example below the remote functions and update notifications, that are defined in this document
as constant values for the wFnId parameter of the message (see chapter 2), are presented as
functions described in a ‘C’ syntax. The parameter structures of these functions are according the
input, output or notify structures described in the appropriate section.

For every function it is assumed that the function will create its structure, transport the parameters to
the CCU and wait for the result information coming from the CCU.

For both the remote functions and the update notifications the same names are used as their
identifier, but without the constant mark “C” and using mixed case names. So, e.g. remote function
CC_C_START_CAMERA_APP shall as function be referenced as:

 CC_Start_Camera_App (void);

D.3.1. Controlling CC application
This example shows the minimum steps to be taken for controlling the CC application

First we have to start controlling the CC application on the CCU.

DCN Next Generation Open Interface Release 4.1 en | 233

Bosch Security Systems | 2013 March

typedef struct

{

 WORD wLength;

 BYTE byData[CC_C_MAX_DATA_LEN];

} CC_T_DATA_FRAME;

typedef struct

{

 BOOLEAN byCameraActivity;

} CC_T_CAMERA_ACTIVITY;

WORD wError;

wError = CC_Start_Camera_App();

switch (wError)

{

 case CC_E_INCONTROL_THIS_CHANNEL:

 /* I have the CC app already under control */

 /* Is that correct? Has the remote controller restarted? */

 /* For the moment assume to be correct and continue */

 break;

 case CC_E_INCONTROL_OTHER_CHANNEL:

 /* Another remote controller has control over the CC application */

 /* report error and terminate */

 break;

 case CC_E_NOERROR:

 /* function ended succesfully */

 break;

 default:

 /* some unexpected error occurred, report the error */

 break;

}

We have now established communication with the CC application on the CCU. Since controlling has
now started, update notifications may arrive. Therefore, we need the following functions:

void CC_Receive_Data(CC_T_DATA_FRAME tDataFrame)

{

 /* Handle data of tDataFrame */

}

Assume that we want to activate camera activity. We then need the following functions and control
flow:

CC_T_CAMERA_ACTIVITY tCameraActivity;

tCameraActivity.bCameraActivity = TRUE;

WORD wError;

wError = CC_Set_Camera_Activity(&tCameraActivity);

if (wError != CC_E_NOERROR)

{

 /* do error handling */

}

We can now send remote functions to configure camera control.

DCN Next Generation Open Interface Release 4.1 en | 234

Bosch Security Systems | 2013 March

When we no longer need to be able to send remote functions and receive update notifications we
can stop the communication with the CC application using the function:

wError = CC_Stop_Camera_App();

if (wError != CC_E_NOERROR)

{

 /* do error handling */

}

This ends remotely controlling the CC application.

D.4. Simultaneous Interpretation
In the example below the remote functions and update notifications, that are defined in this document
as constant values for the wFnId parameter of the message (see chapter 2), are presented as
functions described in a ‘C’ syntax. The parameter structures of these functions are according the
input, output or notify structures described in the appropriate section.

For every function it is assumed that the function will create its structure, transport the parameters to
the CCU and wait for the result information coming from the CCU.

For both the remote functions and the update notifications the same names are used as their
identifier, but without the constant mark “C” and using mixed case names. So, e.g. remote function
IN_C_START_IN_APP shall as function be referenced as:

 IN_Start_IN_App (void);

D.4.1. Simultaneous Interpretation Control
This example shows the minimum steps to be taken for controlling the IN application

First we have to start controlling the IN application on the CCU.

typedef struct

{

 BOOLEAN bConnectChanges;

 IN_T_MICSTAT tIntMics;

 IN_T_ACTIVECHAN tInActiveChan;

 IN_T_CHANNELS tAChannels;

 IN_T_CHANNELS tBChannels;

 IN_T_CHANNELS tInChannels;

} IN_T_CHAN_STATUS;

typedef struct

{

 BYTE byBetweenLock;

 BYTE byWithinLock;

 BYTE byMaxChans;

 WORD wVerLangList;

 IN_T_CHANNELLANG tChanLang;

} IN_T_CCU_CONFIG;

typedef struct

{

 WORD wAudioLangId;

 CHAR szLangName[DBSC_NCHAR_LANGNAME];

 CHAR szLangAbbr[DBSC_NCHAR_LANGABBR];

} IN_T_LANGLIST;

typedef struct

{

 WORD wVersionOfLangList;

 struct IN_T_LANGLIST tLangList[DBSC_MAX_LANGNAME];

} IN_T_LANGUAGE_LIST;

IN_T_CHAN_STATUS tChanStatus;

IN_T_CCU_CONFIG tCcuConfig;

DCN Next Generation Open Interface Release 4.1 en | 235

Bosch Security Systems | 2013 March

IN_T_LANGUAGE_LIST tLanguageList;

BOOLEAN bFlashingWhenEngaged;

BOOLEAN bFloordistribution;

BOOLEAN bSpeakSlowlySign;

BOOLEAN bHelpSign;

WORD wNrOfInstances;

WORD wError;

/* wNrOfInstances will hold the nr of remote controllers connected */

wError = IN_Start_IN_App(&wNrOfInstances);

switch (wError)

{

 case IN_E_INCONTROL_THIS_CHANNEL:

 /* I have the IN app already under control */

 /* Is that correct? Has the remote controller restarted? */

 /* For the moment assume to be correct and continue */

 break;

 case IN_E_INCONTROL_OTHER_CHANNEL:

 /* Another remote controller has control over the IN application */

 /* report error and terminate */

 break;

 case IN_E_NOERROR:

 /* function ended succesfully, check wNrOfInstances /

 if (wNrOfInstances == 0)

 {

 /* do error handling, this should be impossible /

 }

 else

 {

 /*

 * IN app is started by this remote controller. Note

 * that wNrOfInstances can be larger than 1 since

 * remote monitors may also have registered

 * via IN_C_START_MON_IN. Continue normal operation.

 */

 }

 break;

 default:

 /* some unexpected error occurred, report the error */

 break;

}

We have now established communication with the IN application on the CCU. Since controlling has
now started, we could wait for the updates to monitor the interpreter desks status updates. Therefore,
we need the following functions:

void IN_Chan_Status(IN_T_CHAN_STATUS tNotifiedChanStatus)

{

 /* copy the values of tNotifiedChanStatus to tChanStatus */

}

void IN_Ccu_Config(IN_T_CCU_CONFIG tNotifiedCcuConfig)

{

 /* copy the values of tNotifiedCcuConfig to tCcuConfig /

}

void IN_Flashing_Mic_On(BOOLEAN bNotifiedFlashingWhenEngaged)

{

 bFlashingWhenEngaged = bNotifiedFlashingWhenEngaged;

DCN Next Generation Open Interface Release 4.1 en | 236

Bosch Security Systems | 2013 March

}

void IN_Floor_Distribution(BOOLEAN bNotifiedFloordistribution)

{

 bFloordistrubution = bNotifiedFloordistribution;

}

void IN_Language_List(IN_T_LANGUAGE_LIST tNotifiedLanguageList)

{

 /* copy values of tNotifiedLanguageList to tLanguageList */

}

void IN_SpeakSlowly_Sign(BOOLEAN bNotifiedSpeakSlowlySign)

{

 bSpeakSlowlySign = bNotifiedSpeakSlowlySign;

}

void IN_Help_Sign(BOOLEAN bNotifiedHelpSign)

{

 bHelpSign = bNotifiedHelpSign;

}

Assume that we want a system with an interlock mode between booths IN_C_OVERRIDE and a
normal engaged Led indication. We can check these settings after having received the update
notifications and change them if needed. Therefore we need the following functions and control flow:

if (tCcuConfig.byBetweenLock != IN_C_OVERRIDE)

{

 IN_T_UPDATE_LCK tUpdateLck;

 tUpdateLck.wWithin = (WORD)tCcuConfig.byWithinLock;

 tUpdateLck.byBetween = IN_C_OVERRIDE;

 tUpdateLck.bEngaged = TRUE;

 WORD wError;

 wError = IN_Update_Lck(&tUpdateLck);

 if (wError != IN_E_NOERROR)

 {

 /* do error handling */

 }

 else

 {

 /* update local administration */

 tCcuConfig.byBetweenLock = IN_C_OVERRIDE;

 }

}

Once the settings are known, we could wait for the updates to monitor the interpreter desks status
updates, or send remote functions to influence that status.

When we no longer need to be able to send remote functions and receive update notifications we
can stop the communication with the IN application using the function:

wError = IN_Stop_IN_App(&wNrOfInstances);

if (wError != IN_E_NOERROR)

{

 /* do error handling */

}

This ends remotely controlling the IN application. Note that the value of wNrOfInstances can still be
larger than 0, if there still are registered remote monitors.

D.5. Voting
In the examples below the remote functions are seen as functions, which can be called. The
parameters passed to the function form the input parameter structure. When a function returns
information, the parameter list is finished with a structure parameter to store the information into.

DCN Next Generation Open Interface Release 4.1 en | 237

Bosch Security Systems | 2013 March

For every function is assumed that the function will create his structure, transport the parameters to
the CCU and waits for the result information coming from the CCU.

For update notifications is assumed that the examples create a (update) function that will be called
whenever the CCU has sent the notification.

For both the remote functions as the update notifications the same names are used as their identifier,
but without the constant mark “C”, some “_” and using mixed case names.

For example remote function VT_C_RESTART_VOTING shall be referenced as function as:

 VT_RestartVoting ();

D.5.1. Running a vote round without update notifications
In this example we consider to have prepared a voting script holding multiple parliamentary voting
motions. Each motion is of the same kind with the following settings:

• Parliamentary with answer options “Yes”, “Abstain” and “No”
• The results will be collected using remote functions (initial we do not use the update

notifications) using compressed results.
• The first vote casted counts
• No voting timer will be used
• The Attendance application inside the CCU must decide which delegate may cast his

vote14. This means that only authorized delegates may vote.
• The casted vote may not be visible by means of the soft-LED’s. After a vote the LED’s

must flash for several seconds and all LED’s must be turned on.

For the simplicity of this example we assume that there is no chairman unit present in the congress
hall (or if present, it will not be used to start or stop the voting). That is all controlling of the voting will
be done by the remote controller.

Declaration of parameters
For the C-example code we need parameters. In this part we declare the parameters used.

WORD wError;

Connecting to the voting application
First the remote controller must get the control of the VT application. Because we do not use the
update notifications, we directly can reduce the number of updates by turning off the automatic result
updates coming from the voting application. The time for showing the text “End of voting” after the
stop of a voting round will be set to 20 seconds. This results in the following function call:

WORD wError;

VT_T_COMCONTROL tComControl;

tComControl.bResultNotify = FALSE;

tComControl.bReserved = FALSE; /* must be FALSE */

tComControl.wViewTimeAfterStop = 20;

wError = VT_StartApp (&tComControl);

switch (wError) /* Check the possible errors */

{

 case VT_E_INCONTROL_THIS_CHANNEL:

 /* I have the voting app already under control */

 /* Is that correct? Is the remote controller restarted? */

 /* For the moment assume to be correct and continue */

 break;

 case VT_E_INCONTROL_OTHER_CHANNEL:

 /* Another remote controller has control over the voting application */

 /* report error and terminate */

14 Note that the interface to enable the attendance application is not described in this document. For information about
the attendance application and the use of the attendance interface see chapter 9.

DCN Next Generation Open Interface Release 4.1 en | 238

Bosch Security Systems | 2013 March

 break;

 case VT_E_NOERROR:

 /* function ended succesful, continue */

 break;

 default:

 /* some unexpected error occurred. */

 /* report the error */

 break;

}

We have now established communication with the voting application on the CCU and can start with
the preparation of the voting session.

Preparing the voting
For the preparation of the voting we must set the global settings, the voting parameters and the
subject of the first voting round to be started.
The setting of the global parameters is done in the code below:

VT_T_GLOBAL_SETTINGS tGlobalSettings;

tGlobalSettings.wVotingLedMode = VT_C_LED_SECRET_FLASH_ON;

tGlobalSettings.wPresentVotes = VT_C_100_AUTHORISED_VOTES; /* AT decides who */

tGlobalSettings.bShowVoteTimer = FALSE; /* we do not use the vote timer */

tGlobalSettings.wVoteTimerLimit = 0;

tGlobalSettings.bReserved1 = FALSE; /* Must be FALSE */

tGlobalSettings.bAutoAbstain = FALSE; /* We are using firstVoteCounts, so false */

tGlobalSettings.bReserved2 = TRUE; /* Must be TRUE */

tGlobalSettings.bVoteWeightingOn = FALSE; /* Everyone has the weight 1 */

tGlobalSettings.bReserved3 = FALSE; /* Must be FALSE */

tGlobalSettings.bFirstVoteCount = TRUE; /* the first cast of a delegate counts */

wError = VT_SetGlobalSettings (&tGlobalSettings);

if (wError != VT_E_NOERROR)

{

 /* do error handling */

}

The second part of the preparation is setting the voting kind as used during all the vote rounds.

VT_T_VOTINGPARAMS tVotingControl;

WORD wIndex;

tVotingControl.wVotingMenu = VT_C_MENU_YES_NO_ABSTAIN;

tVotingControl.wNrOfAnswerOptions = 3; /* Yes, No and Abstain */

tVotingControl.bOpenVoting = TRUE; /* Individual results */

 /* Only send the results to the remote controller */

tVotingControl.wInterimResultType = VT_C_INT_RES_INDIV_PC_ONLY;

tVotingControl.bCompressedResults = TRUE; /* results must be compressed */

wError = VT_SetVotingParams (&tVotingParams);

if (wError != VT_E_NOERROR)

{

 /* do error handling */

}

These two calls finish the preparation for the voting session. We can now start each vote round till
the session is completed.

Running each vote round
For running the vote round we expect an external function present which collects the subject text for
the next voting. This external function returns TRUE if a new subject has been found and returns
FALSE when no more subjects are present. As subject legend we will use the fixed text “Voting”.

DCN Next Generation Open Interface Release 4.1 en | 239

Bosch Security Systems | 2013 March

For controlling the time mechanism and the interaction with the operator we use another two external
functions. The first function returns TRUE when a second has passed and the second function
returns TRUE when the operator has decided to stop the vote-round.

Another external function is assumed to store the voting result. This function accepts the voting
results as used for collecting the results from the CCU.

The function declarations are:

extern BOOLEAN MyFunction_GetSubject (WORD *wVotingNumber, CHAR *szSubject);

extern BOOLEAN MyFunction_SecondTick (void);

extern BOOLEAN MyFunction_OkToStopVoting (void);

extern void MyFunction_StoreResults (VT_T_RESULT_REC *tResults);

Because we are going to run multiple voting rounds, we must set up a looping mechanism:

VT_T_SUBJECT_REC tSubject;

VT_T_RESULT_REC tResults;

 /* start the loop to run all voting rounds */

while (MyFunction_GetSubject (tSubject.wVotingNumber, tSubject.szVotingSubject))

{

We have now received the voting number and the voting subject. All we have to do is extend the
structure with the legend and pass the information to the CCU.

 strcpy (tSubject.szLegendSubject, “Voting”);

 wError = VT_DownloadSubject (&tSubject);

 If (wError != VT_E_NOERROR)

 {

 /* do error handling */

 }

The subject is downloaded to the CCU. The CCU is now ready to start this voting round.
Let’s start the voting.

 wError = VT_StartVoting (); /* no parameters */

 If (wError != VT_E_NOERROR)

 {

 /* do error handling */

 }

The voting round is running.
During the run of the vote round the program must wait for the operator to stop the voting. In the
mean time we collect the voting results from the CCU and store them.

 while (! MyFunction_OkToStopVoting ())

 {

 if (MyFunction_SecondTick ())

 {

 /* collect the interim results */

 wError = VT_GetResults (&tResults);

 If (wError != VT_E_NOERROR)

 {

 /* do error handling */

 }

 /* store the results */

 MyFunction_StoreResults (&tResults);

 }

 }

Note that after the collection of the results the voting-number present in the result-structure should be
the same as set during the download of the subject.

The vote round should be finished by stopping the VT application on the CCU. We do not allow that
the results are shown on the units LCD’s, so no show-results.

 wError = VT_StopVoting (FALSE); /* no parameters */

 If (wError != VT_E_NOERROR)

 {

DCN Next Generation Open Interface Release 4.1 en | 240

Bosch Security Systems | 2013 March

 /* do error handling */

 }

After successful completion the final results are ready on the CCU to be collected. Note that the CCU
sends an update notification with the final results (if activated). But in this example we have stated
that we do not use the update notifications. Therefore we collect the final result using the remote
function.

 wError = VT_GetResults (&tResults);

 If (wError != VT_E_NOERROR)

 {

 /* do error handling */

 }

 /* store the results */

 MyFunction_StoreResults (&tResults);

This completes the vote rounds, so we can start the next vote round to complete the voting session.

 /* terminating the loop for each voting round */

}

Terminating the voting applications
After done all vote rounds we can stop the communication with the voting application using the
function:

wError = VT_StopApp (); /* no parameters */

If (wError != VT_E_NOERROR)

{

 /* do error handling */

}

D.6. Attendance Registration and Access Control
In the examples below the remote functions and update notifications, that are defined in this
document as constant values for the wFnId parameter of the message (see chapter 2), are
presented as functions described in a ‘C’ syntax. The parameter structures of these functions are
according the input, output or notify structures described in the appropriate section.

For every function is assumed that the function will create the required input parameter structure,
transport the parameters to the CCU and waits for the result information coming from the CCU.

For both the remote functions as the update notifications the same names are used as their identifier,
but without the constant mark “C”, some “_” and using mixed case names.

For example remote function AT_C_STORE_SETTING shall be referenced as function:

 AT_StoreSetting (&tSettings);

D.6.1. Using Attendance Registration and Access Control
This example shows how the remote controller can perform attendance registration with the
entrance- and exit units by using ID Cards.

For this example we have defined the following DCN NG system:

• A conference hall equipped with delegate units without ID-card readers
• Entrance and Exit units are present.
• The seat-assignment has been done by the remote controller.
• A delegate database is downloaded into the CCU.

Using this system we like to use the ID-cards for registration and access control for all delegates.
Because the system does not have an ID-card reader in the units, we use card-readers in the
entrance- and exit units to register the delegates.

First the remote controller must register himself to the AT application.

error = AT_StartATApp (AT_C_APP_CONTROL);

switch (error)

DCN Next Generation Open Interface Release 4.1 en | 241

Bosch Security Systems | 2013 March

{

 case AT_E_INCONTROL_THIS_CHANNEL:

 /* I have the attendance registration app already under control */

 /* Is that correct? Is the remote controller restarted? */

 /* For the moment assume to be correct and continue */

 break;

 case AT_E_INCONTROL_OTHER_CHANNEL:

 /* Another remote controller has control over the attendance registration app */

 /* report error and terminate */

 return;

 case AT_E_INMONITOR_THIS_CHANNEL:

 /* I tried to open the application for control, but it seems that I have the */

 /* attendance registration application already opened for Monitoring attendance. */

 /* report error and terminate */

 return;

 case AT_E_NOERROR:

 /* function ended succesful, continue */

 break;

 default:

 /* some unexpected error occurred. */

 /* report the error */

 break;

}

We now have control over the attendance registration application and may change the settings, but
first the input parameter structure must be filled in:

AT_T_SETTINGS tSettings;

tSettings.bySeatAttend = AT_C_ENTRANCE_EXIT;

tSettings.bySeatAccess = AT_C_ONE_SEAT;

tSettings.byControlType = AT_C_IDCARD;

error = AT_StoreSetting (&tSettings);

if (error != AT_E_NOERROR)

{

 /* do error handling */

}

Starting attendance registration and access control will be done by calling the following function:

AT_T_ACTIVATE tActivate;

tActivate.bAttendanceOn = TRUE;

tActivate.bAccessOn = TRUE;

error = AT_Activate (&tActivate);

if (error != AT_E_NOERROR)

{

 /* do error handling */

}

The CCU is now running attendance registration and access control. When a delegate inserts his ID-
card into an entrance unit, the AT application on the CCU sends an “individual registration” and “total
registration” notification.

This result in the following two functions:

DCN Next Generation Open Interface Release 4.1 en | 242

Bosch Security Systems | 2013 March

void AT_SendIndivRegistration (AT_T_REGISTER_INDIV *tIndivResults)

{

 WORD wIndex;

 /* get presence of delegates */

 for (wIndex = 0; wIndex < tIndivResults->wFillLevel; wIndex++)

 {

 /* handle the presency of each delegate separately */

 }

}

void AT_SendTotalRegistration (AT_T_REGISTER_TOTAL *tTotalResults)

{

 /* update the local results with the new total present and absent information from the

CCU */

}

When the remote controller is also equipped with a card-reader, then the delegates may use that
card-reader to register themselves. In that specific case the remote controller reads the ID-card and
registers the delegate to the Attendance application by using the AT_C_HANDLE_IDENTIFICATION
remote function.

For example when two delegates with card-code 16824 and 6823 have registered themselves using
the remote controller, the remote controller performs the following actions:

AT_T_IDENTIFICATION_REC tIdentification;

tIdentification.wEvent = ACSC_EVENT_INSERT_CARD_ENTRANCE;

tIdentification.wFillLevel = 2;

tIdentification.tDelIdentification [0].dwCardCode = 16824;

tIdentification.tDelIdentification [0].wPinCode = 0; /* not used */

tIdentification.tDelIdentification [1].dwCardCode = 6823;

tIdentification.tDelIdentification [1].wPinCode = 0; /* not used */

wError = AT_HandleIdentification (&tIdentification);

if (wError != AT_E_NOERROR)

{

 /* do error handling */

}

Finally, when the congress is ended, we can stop the Attendance registration and Access control by
calling:

AT_T_ACTIVATE tActivate;

tActivate.bAttendanceOn = FALSE;

tActivate.bAccessOn = FALSE;

error = AT_Activate (&tActivate);

if (error != AT_E_NOERROR)

{

 /* do error handling */

}

Now the control can be given back to the CCU by calling the following function:

error = AT_StopATApp ();

if (error != AT_E_NOERROR)

{

 /* do error handling */

}

DCN Next Generation Open Interface Release 4.1 en | 243

Bosch Security Systems | 2013 March

D.7. Text & Status Display (LD)
In the example below the remote functions and update notifications, that are defined in this document
as constant values for the wFnId parameter of the message (see chapter 2), are presented as
functions described in a ‘C’ syntax. The parameter structures of these functions are according the
input, output or notify structures described in the appropriate section.

For every function it is assumed that the function will create its structure, transport the parameters to
the CCU and wait for the result information coming from the CCU.

For both the remote functions and the update notifications the same names are used as their
identifier, but without the constant mark “C” and using mixed case names (with less underscores).
So, e.g. remote function LD_C_START_LD_APP shall as function be referenced as:

 LD_StartLDApp (void);

D.7.1. Controlling LD application
This example shows the minimum steps to be taken for controlling the LD application

First we have to start controlling the LD application on the CCU.

typedef struct

{

 WORD wDisplayId;

 WORD wFlags;

 WORD wNrOfSpeakerLines;

 WORD wNrOfRequestLines;

 DWORD dwReserved;

} LD_T_DISPLAY_REC;

typedef struct

{

 WORD wDisplayId;

 CHAR ssData[DCNC_MAX_DISPLAYDATA_SIZE];

 WORD wNumOfChars;

} LD_T_DISPLAY_DATA;

WORD wError;

wError = LD_StartLDApp();

switch (wError)

{

 case LD_E_INCONTROL_THIS_CHANNEL:

 /* I have the LD app already under control */

 /* Is that correct? Has the remote controller restarted? */

 /* For the moment assume to be correct and continue */

 break;

 case LD_E_INCONTROL_OTHER_CHANNEL:

 /* Another remote controller has control over the LD application */

 /* report error and terminate */

 break;

 case LD_E_NOERROR:

 /* function ended succesfully */

 break;

 default:

 /* some unexpected error occurred, report the error */

 break;

}

DCN Next Generation Open Interface Release 4.1 en | 244

Bosch Security Systems | 2013 March

We have now established communication with the LD application on the CCU. Since controlling has
now started, update notifications may arrive. Therefore, we need the following functions:

void LD_SendAnumData(LD_T_DISPLAY_DATA* ptDisplayData)

{

 /* Handle data of ptDisplayData */

}

Assume that we want to store display settings of LD_C_DISPLAY_TWO. We then need the following
functions and control flow:

LD_T_DISPLAY_REC tSettings;

tSettings.wDisplayId = LD_C_DISPLAY_TWO;

/* Enable VT and MM application */

tSettings.wFlags = LD_C_VT_FLAG_DISPLAY | LD_C_MM_FLAG_DISPLAY;

tSettings.wNrOfSpeakerLines = 4;

tSettings.wNrOfRequestLines = 6;

WORD wError;

wError = LD_StoreDisplaySettings(&tSettings);

if (wError != LD_E_NOERROR)

{

 switch (wError)

 {

 case LD_E_APP_NOT_STARTED:

 /* Application not started, handle error */

 break;

 case LD_E_UNKNOWN_DISPLAY:

 /* Incorrect display, handle error */

 break;

 case LD_E_WRONG_PARAMETER:

 /* Incorrect parameter, handle error */

 break;

 case LD_E_LINES_OVERFLOW:

 /* wNrOfSpeakerLines + wNrOfRequestLines >

 LD_C_MAX_NUMBER_OF_DISPLAY_LINES */

 break;

 default:

 /* Handle unknown error */

 break;

 }

}

When we no longer need to be able to receive update notifications we can stop the communication
with the LD application using the function:

wError = LD_StopLDApp();

if (wError != LD_E_NOERROR)

{

 /* do error handling */

}

This ends remotely controlling the LD application.

D.8. Message Distribution
In the example below the remote functions, that are defined in this document as constant values for
the wFnId parameter of the message (see chapter 2), are presented as functions described in a ‘C’
syntax. The parameter structures of these functions are according the input or output structures
described in the appropriate section.

DCN Next Generation Open Interface Release 4.1 en | 245

Bosch Security Systems | 2013 March

For every function it is assumed that the function will create these structures (if needed), transport
the parameters to the CCU, waits for the result information coming from the CCU and deletes the
created structures if not needed anymore.

For the remote functions the same names are used as their identifier, but without the constant mark
“C” and using mixed case names. So, e.g. remote function MD_C_SEND_MESSAGE_TO_UNITS
shall be referenced as function as:

 MD_SendMessageToUnits(MD_T_SEND_MESS* ptSendMessage);

D.8.1. Sending a Message
This example shows the steps to be taken for using the MD application.

In this example, we will send a message to a list of interpreter units. We will assume that these units
exist.

WORD wError;

typedef struct

{

 DCNC_LCD_TEXT_BLOCK tText;

 WORD wRcvType;

 WORD wDuration;

 WORD wNumOfUnits;

 WORD wUnitList[DBSC_MAX_ACT_UNIT];

} MD_T_SEND_MESS;

typedef struct

{

 WORD wUnitId;

 BYTE byButtonType;

 BOOLEAN bOn;

} MD_T_REQ_BUTTON_ON_OFF;

typedef struct

{

 WORD wUnitId;

 BYTE byLedMask;

} MD_T_AUX_LED_CTL;

MD_T_SEND_MESS tSendMessage;

tSendMessage.wUnitList[0] = 1; // List with unit id's of interpreters.

tSendMessage.wUnitList[1] = 2;

tSendMessage.wUnitList[2] = 3;

tSendMessage.wUnitList[3] = 4;

tSendMessage.wNumOfUnits = 4;

tSendMessage.tText[0] = "Line 1";

tSendMessage.tText[1] = "Line 2";

tSendMessage.tText[2] = "Line 3";

tSendMessage.tText[3] = "Line 4";

tSendMessage.tText[4] = ""; // Fifth line is a terminating line

tSendMessage.wRcvType = MD_C_RCV_INTERPRETER; /* Send to interpreters. */

tSendMessage.wDuration = 0; /* Only needed for hall displays */

/* Send the message to the listed interpreters. */

wError = MD_SendMessageToUnits(&tSendMessage);

if (wError != MD_E_NOERROR)

{

 /* do error handling */

}

If we are interested in receiving update notifications, we must register with the CCU.

WORD wNrOfInstances = 0;

wError = MD_StartMonMD(&wNrOfInstances);

if (wError != MD_E_NOERROR)

DCN Next Generation Open Interface Release 4.1 en | 246

Bosch Security Systems | 2013 March

{

 /* do error handling */

}

else

{

 switch (wNrOfInstances)

 {

 case 0: /* Something went wrong, handle error */

 break;

 case 1: /* OK */

 break;

 default:

 /* two or more, stop rest until we have one left */

 WORD wNewNrOfInstances = 0;

 do

 {

 MD_StopMonMD(&wNewNrOfInstances);

 } while (wNewNrOfInstances > 1);

 break;

 }

}

Now we can receive update notifications. We need a function to receive the update.

void MD_ReqButtonOnOff(MD_T_REQ_BUTTON_ON_OFF* ptReqButton)

{

 switch (ptReqButton->byButtonType)

 {

 case MD_C_AUXILIARY_BUTTON:

 if (ptReqButton->bOn)

 {

 /* Aux button pressed and held, switch on notebook

 LED (and switch off other LEDs) */

 MD_T_AUX_LED_CTL tAuxLedCtl;

 tAuxLedCtl.wUnitId = ptReqButton->wUnitId;

 tAuxLedCtl.byLedMask = MD_C_IN_NOTEBOOK_LED;

 MD_AuxLedControl(&tAuxLedCtl);

 /* handle message further */

 }

 else

 {

 /* Aux button released, switch off notebook

 LED (and all other LEDs) */

 MD_T_AUX_LED_CTL tAuxLedCtl;

 tAuxLedCtl.wUnitId = ptReqButton->wUnitId;

 tAuxLedCtl.byLedMask = 0;

 MD_AuxLedControl(&tAuxLedCtl);

 /* handle message further */

 }

 break;

 case MD_C_SPEAKSLOWLY_BUTTON:

 /* Handle message */

 break;

 case MD_C_HELP_BUTTON:

 /* Handle message */

 break;

DCN Next Generation Open Interface Release 4.1 en | 247

Bosch Security Systems | 2013 March

 }

}

Finally if we are no longer interested in update notifications, we can deregister with the CCU.

wError = MD_StopMonMD(&wNrOfInstances);

if (wError != MD_E_NOERROR)

{

 /* do error handling */

}

D.9. Intercom
In the example below the remote functions and update notifications, that are defined in this document
as constant values for the wFnId parameter of the message (see chapter 2), are presented as
functions described in a ‘C’ syntax. The parameter structures of these functions are according the
input, output or notify structures described in the appropriate section.

For every function is assumed that the function will create his structure, transport the parameters to
the CCU and waits for the result information coming from the CCU.

For both the remote functions as the update notifications the same names are used as their identifier,
but without the constant mark “C” and using mixed case names. So, e.g. remote function
IC_C_SET_LINKS shall be referenced as function as:

 IC_Set_Links (&tLinks);

D.9.1. Intercom without update notifications
This example shows the steps to be taken for controlling the IC application.

In this example, we will setup a link between some units. We will assume an operator has been
assigned.

WORD wError;

IC_T_LINKINFO_LIST tLinks;

/*

 * Set up a bi-directional link between units 3 and 7 and a

 * one-way link from unit 2 to unit 5.

 */

tLinks[0].wSourceId = 3; /* from unit 3 */

tLinks[0].wDestId = 7; /* to unit 7 */

tLinks[1].wSourceId = 7; /* from unit 7 */

tLinks[1].wDestId = 3; /* to unit 3 */

tLinks[2].wSourceId = 2;

tLinks[2].wDestId = 5;

/* End of list. */

tLinks[3].wSourceId = IC_C_UNASSIGNED_UNIT;

tLinks[3].wDestId = IC_C_UNASSIGNED_UNIT;

wError = IC_Set_links(&tLinks);

switch(wError)

{

 case IC_E_NOERROR:

 /* links are set */

 break;

 case IC_C_WRONG_PARAMETER:

 /* do error handeling */

 break;

 default:

 /* report error */

 break;

}

DCN Next Generation Open Interface Release 4.1 en | 248

Bosch Security Systems | 2013 March

When the handset of unit 3 is picked up, a call is made to unit 7. If unit 7 picks up the handset the call
will be established (and vice versa). When unit 5 picks up its handset, the operator will be called, and
not unit 2. On the other hand, when unit 2 starts a call, the call will be made to unit 5.

DCN Next Generation Open Interface Release 4.1 en | 249

Bosch Security Systems | 2013 March

DCN Next Generation Open Interface Release 4.1 en | 250

Bosch Security Systems | 2013 March

APPENDIX E. OPEN INTERFACE CHANGES IN DCNNG 4.0

E.1. Changes with respect to DcnNg 3.1
1. Added in DcnNg 4.0:

o Support for DCN-CCU2 and DCN-CCUB2

o SC_C_BATTERY_STATUS_REQ

o SC_C_BATTERY_INFO_REQ

o SC_C_SIGNAL_STATUS_REQ

o SC_C_SIGNAL_QUALITY_REQ

o SC_C_UNIT_SIGNAL_QUALITY_REQ

o SC_C_LOW_BATTERY_REQ

o SC_C_GET_ENCRYPTION_ENABLED

o SC_C_SET_ENCRYPTION_ENABLED

o SC_C_BATTERY_STATUS

o SC_C_BATTERY_INFO_SERIAL

o SC_C_BATTERY_INFO_CONDITION

o SC_C_SIGNAL_STATUS

o SC_C_SIGNAL_QUALITY

o SC_C_UNIT_SIGNAL_QUALITY

o SC_C_LOW_BATTERY

o SC_C_ENCRYPTION_ENABLED

o SI_C_GET_WAP_SETTINGS

o SI_C_SET_WAP_SETTINGS

o SI_C_GET_WIRELESS_SETTINGS

o SI_C_SET_WIRELESS_SETTINGS

o SI_C_GET_NETWORK_MODE

o SI_C_SET_NETWORK_MODE

o SI_C_UNSUBSCRIBE_REQ

o SI_C_START_MON_SI

o SI_C_STOP_MON_SI

o IN_C_UNASSIGN_UNIT

• Removed in DcnNg 4.0:

o Support for DCN-CCU, DCN-CCUB and DCN-NCO.

• Changed in DcnNg 4.0:

o Definition of OIP_DCN_MSGTYPE

o SI_C_GET_OPERATION_MODE:

 Value set of byStartupMode

 Translation of Startup Mode and Slave-Id to multi mode (standalone, multi
master, multi slave and single Ccu)

o SI_C_SET_OPERATION_MODE:

 Value set of byStartupMode

DCN Next Generation Open Interface Release 4.1 en | 251

Bosch Security Systems | 2013 March

 Translation of Startup Mode and Slave-Id to multi mode (standalone, multi
master, multi slave and single Ccu)

o

E.2. Changes with respect to DcnNg 2.68
• Added in DcnNg 4.0:

o Support for DCN-CCU2 and DCN-CCUB2

o SC_C_LOW_BATTERY_REQ

o SC_C_LOW_BATTERY

o IN_C_ASSIGN_UNIT

o IN_C_UNASSIGN_UNIT

• Removed in DcnNg 4.0:

o Support for DCN-CCU, DCN-CCUB, DCN-WCCU and DCN-NCO.

• Changed in DcnNg 4.0:

o Definition of OIP_DCN_MSGTYPE

o SI_C_GET_OPERATION_MODE, value set of byStartupMode

o SI_C_GET_SYSTEM_MODE renamed to SI_C_GET_NETWORK_MODE

o SI_C_SET_SYSTEM_MODE renamed to SI_C_SET_NETWORK_MODE

o SI_C_GET_OPERATION_MODE:

 Value set of byStartupMode

 Translation of Startup Mode and Slave-Id to multi mode (standalone, multi
master, multi slave and single Ccu)

o SI_C_SET_OPERATION_MODE:

 Value set of byStartupMode

 Translation of Startup Mode and Slave-Id to multi mode (standalone, multi
master, multi slave and single Ccu)

o SI_C_GET_WAP_SETTING:

 Value set of byOptions

o SI_C_SET_WAP_SETTING:

 Value set of byOptions

o SI_C_WAP_SETTING:

 Value set of byOptions

	Table of Contents
	1. Introduction
	1.1 Purpose
	1.2 Scope
	1.3 Definitions, Acronyms and Abbreviations
	1.4 References

	2. General description
	2.1 System setup
	2.1.1 Use of TCP/IP port
	2.1.2 Requirements
	2.1.3 Hardware connection
	2.1.3.1 CCU

	2.2 Message format
	2.2.1 Conventions
	2.2.2 DCN-NG message layout
	2.2.2.1 Format of type MDSC_REMOTEPROCEDURE_REQ
	2.2.2.2 Format of type MDSC_REMOTEPROCEDURE_RSP
	2.2.2.3 Format of type MDSC_NOTIFY

	2.2.3 Ethernet message layout

	Where:
	2.2.3.1 Format of type MESSAGETYPE_OIP_KeepAlive

	Purpose:
	Parameter structure:
	Where:
	2.2.3.2 Format of type MESSAGETYPE_OIP_ResponseProtocolError

	Parameter structure:
	Where:
	2.2.3.3 Format of type MESSAGETYPE_OIP_Dcn

	Where:
	2.3 Protocol description
	2.3.1 Ethernet Protocol Description
	2.3.1.1 Open interface protocol
	2.3.1.1.1 Set-up a connection
	2.3.1.1.2 Heartbeat
	2.3.1.1.3 Timing values

	2.3.2 Remote function execution
	2.3.3 Control flow with multiple remote controller’s

	2.4 Remote Functions
	2.4.1 Remote function handling

	Possible error codes are:
	2.4.2 Simultaneous operation from Control PC and Remote Controller

	3. SYSTEM CONFIGURATION AND SYSTEM INSTALLTION
	3.1 Introduction
	3.1.1 Remote functions
	3.1.1.1 Remote function item explanation

	3.1.2 System Modes

	3.2 System Configuration (SC) Functions
	3.3 Introduction
	3.3.1 SC_C_CHECK_LINK

	Purpose
	Availability
	Parameter structure for the function
	Response structure from the function
	Error codes
	SC_E_NOERROR
	3.3.2 SC_C_START_APP

	Purpose
	Availability
	Parameter structure for the function
	Response structure from the function
	Related functions
	SC_C_STOP_APP
	3.3.3 SC_C_STOP_APP

	Purpose
	Availability
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	SC_E_NOERROR
	Related functions
	SC_C_START_APP
	3.3.4 SC_C_GET_CCU_VERSIONINFO

	Purpose
	Availability
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	SC_E_NOERROR
	3.3.5 SC_C_GET_CCU_CONFIG <deprecated>

	Purpose
	Availability
	Response structure from the function
	Error codes returned
	SC_E_NOERROR
	3.3.6 SC_C_GET_CCU_CONFIG_PROPERTY

	Purpose
	Availability
	Parameter structure for the function
	Response structure from the function
	3.3.7 SC_C_REQ_SERIAL_NR

	Purpose
	Availability
	Parameter structure for the function
	Error codes returned
	Update notifications
	SC_C_ SERIAL_NR
	3.3.8 SC_C_GET_SLAVE_NODES

	Purpose
	Availability
	Parameter structure for the function
	Related functions
	SC_C_REQ_SERIAL_NR
	3.3.9 SC_C_GET_ UNIT_IDS

	Purpose
	Availability
	Parameter structure for the function
	Related functions
	SC_C_REQ_SERIAL_NR
	3.3.10 SC_C _BATTERY_STATUS_REQ
	3.3.11 SC_C_BATTERY_INFO_REQ
	3.3.12 SC_C_SIGNAL_STATUS_REQ
	3.3.13 SC_C_SIGNAL_QUALITY_REQ
	3.3.14 SC_C_UNIT_SIGNAL_QUALITY_REQ
	3.3.15 SC_C_LOW_BATTERY_REQ
	3.3.16 SC_C_GET_ENCRYPTION_ENABLED
	3.3.17 SC_C_SET_ENCRYPTION_ENABLED
	3.4 System Configuration (SC) notifications
	3.4.1 Introduction
	3.4.1.1 Update Notification item explanation
	3.4.1.2 Unit/user event relations

	UNIT-EVENT MATRIX
	Single-CCU System (Remote Controller connected as specified in chapter 2
	Multi-CCU System (Remote Controller connected to the Master as specified in chapter 2
	3.4.2 SC_C_CCU_REBOOT

	Purpose
	Notify structure with this update
	3.4.3 SC_C_CONNECT_UNIT

	Purpose
	Notify structure with this update
	3.4.4 SC_C_DISCONNECT_UNIT

	Purpose
	Notify structure with this update
	3.4.5 SC_C_CONNECT_SLAVE_CCU

	Purpose
	Notify structure with this update
	3.4.6 SC_C_DISCONNECT_SLAVE_CCU

	Purpose
	Notify structure with this update
	3.4.7 SC_C_CCU_MODE_CHANGE

	Purpose
	Notify structure with this update
	3.4.8 SC_C _SERIAL_NR

	Purpose
	Notify structure with this update
	3.4.9 SC_C_BATTERY_STATUS
	3.4.10 SC_C_BATTERY_INFO_SERIAL
	3.4.11 SC_C_BATTERY_INFO_COND
	3.4.12 SC_C_SIGNAL_STATUS
	3.4.13 SC_C_SIGNAL_QUALITY
	3.4.14 SC_C_UNIT_SIGNAL_QUALITY
	3.4.15 SC_C_LOW_BATTERY
	3.4.16 SC_C_ENCRYPTION_ENABLED
	3.5 System Installation (SI) functions
	3.5.1 Introduction
	3.5.2 SI_C_START_INSTALL

	Purpose
	Availability
	Parameter structure for the function
	Error codes returned
	Update Notifications
	Related functions
	3.5.3 SI_C_STOP_INSTALL

	Purpose
	Availability
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	Update Notifications
	Related functions
	3.5.4 SI_C_SELECT_UNIT

	Purpose
	Availability
	Parameter structure for the function
	Error codes returned
	Related functions
	3.5.5 SI_C_SET_MASTER_VOL

	Purpose
	Availability
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	3.5.6 SI_C_SET_EXT_CONTACT

	Purpose
	Availability
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	SI_E_NOERROR
	Related functions
	SI_C_GET_EXT_CONTACT
	3.5.7 SI_C_GET_EXT_CONTACT

	Purpose
	Availability
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	SI_E_NOERROR
	Related functions
	SI_C_SET_EXT_CONTACT
	3.5.8 SI_C_SET_MICROPHONE_GAIN

	Purpose
	Availability
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	Related functions
	SI_C_GET_MICROPHONE_GAIN
	Update notifications
	SI_C_MICROPHONE_GAIN
	3.5.9 SI_C_GET_MICROPHONE_GAIN

	Purpose
	Availability
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	Related functions
	SI_C_SET_MICROPHONE_GAIN
	3.5.10 SI_C_RESET_MICROPHONE_GAIN

	Purpose
	Availability
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	Update notifications
	SI_C_MICROPHONE_GAIN_RESET
	3.5.11 SI_C_DEINITIALIZE_ALL

	Purpose
	Availability
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	3.5.12 SI_C_GET_OPERATION_MODE

	Purpose
	Availability
	Parameter structure for the function
	Response structure from the function
	Related functions
	SI_C_SET_OPERATION_MODE
	3.5.13 SI_C_SET_OPERATION_MODE

	Purpose
	Availability
	Parameter structure for the function
	Error codes returned
	SI_E_NOERROR
	Related functions
	SI_C_GET_OPERATION_MODE
	3.5.14 SI_C_UNSUBSCRIBE_REQ

	Purpose
	Availability
	Parameter structure for the function
	Response structure from the function
	Related functions
	SI_C_DEINITIALIZE_ALL
	3.5.15 SI_C_GET_WAP_SETTINGS
	3.5.16 SI_C_SET_WAP_SETTINGS
	3.5.17 SI_C_GET_WIRELESS_SETTINGS
	3.5.18 SI_C_SET_WIRELESS_SETTINGS
	3.5.19 SI_C_GET_NETWORK_MODE
	3.5.20 SI_C_SET_NETWORK_MODE
	3.5.21 SI_C_START_MON_SI
	3.5.22 SI_C_STOP_MON_SI
	3.6 System Installation (SI) notifications
	3.6.1 Introduction
	3.6.1.1 Unit/user event relations

	UNIT-EVENT MATRIX
	3.6.2 SI_C_REGISTER_UNIT

	Purpose
	Notify structure with this update
	3.6.3 SI_C_MICROPHONE_GAIN

	Purpose
	Notifies the remote controller the microphone gain of a unit has been changed
	3.6.4 SI_C_MICROPHONE_GAIN _ RESET

	Purpose
	3.6.5 SI_C_WAP_SETTINGS
	3.6.6 SI_C_WIRELESS_SETTINGS
	3.6.7 SI_C_NETWORK_MODE

	4. Delegate Database
	4.1 Introduction
	4.2 Remote Functions
	4.2.1 DB_C_START_APP

	Purpose
	Availability
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	Related functions
	DB_C_STOP_APP
	4.2.2 DB_C_STOP_APP

	Purpose
	Availability
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	Related functions
	DB_C_START_APP
	4.2.3 DB_C_MAINT_CCU

	Purpose
	Availability
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	DB_E_NOERROR
	DB_E_WRONG_PARAMETER
	DB_E_NOT_INCONTROL
	Related functions
	4.2.4 DB_C_DOWNLOAD_CCU

	Purpose
	Availability
	Parameter structure for the function
	The same structures are used as in the function DB_C_MAINT_CCU.
	Response structure from the function
	Error codes returned
	DB_E_NOERROR
	DB_E_WRONG_PARAMETER
	DB_E_NOT_INCONTROL
	Related functions
	4.2.5 DB_C_CLEAR_CCU

	Purpose
	Availability
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	Related functions
	4.2.6 DB_C_CCU_APPLY_ONE

	Purpose
	Availability
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	DB_E_UPD_DEL_CARD_CHANGED
	DB_E_INSERT_DELEGATE_FAILED
	DB_E_WRONG_PARAMETER
	DB_E_NOT_INCONTROL
	Related functions
	DB_C_DOWNLOAD_CCU
	DB_C_CLEAR_CCU
	5. Microphone management
	5.1 Introduction
	5.1.1 Remote Microphone Management Control
	5.1.2 Microphone List and Mode Management

	5.2 Remote Functions
	5.2.1 Introduction
	5.2.1.1 Preconditions
	5.2.1.2 Remote function item explanation

	5.2.2 MM General functions
	5.2.2.1 MM_C_START_MM

	Purpose
	Parameter structure for the function
	Response structure from the function
	Related functions
	MM_C_STOP_MM
	5.2.2.2 MM_C_STOP_MM

	Purpose
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	Related functions
	MM_C_START_MM
	5.2.2.3 MM_C_START_MON_MM

	Purpose
	Parameter structure for the function
	Response structure from the function
	Related functions
	5.2.2.4 MM_C_STOP_MON_MM

	Purpose
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	MM_E_NOERROR
	Related functions
	5.2.2.5 MM_C_SET_MIC_OPER_MODE

	Purpose
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	Update notifications
	5.2.2.6 MM_C_SET_ACTIVE_MICS

	Purpose
	Parameter structure for the function
	Error codes returned
	Update notifications
	5.2.2.7 MM_C_GET_SETTINGS

	Purpose
	Parameter structure for the function
	Response structure from the function
	Related functions
	MM_C_SET_SETTINGS
	5.2.2.8 MM_C_SET_SETTINGS

	Purpose
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	Update notifications
	Related functions
	MM_C_GET_SETTINGS
	5.2.3 MM Speaker list functions
	5.2.3.1 MM_C_SET_MICRO_ON_OFF

	Purpose
	Error codes returned
	Update notifications
	Related functions
	5.2.3.2 MM_C_SPK_APPEND

	Purpose
	Parameter structure for the function
	Error codes returned
	Update notifications
	MM_C_SPK_APPEND_ON_PC
	Related functions
	MM_C_SPK_REMOVE
	5.2.3.3 MM_C_SPK_REMOVE

	Purpose
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	Update notifications
	MM_C_SPK_REMOVE_ON_PC
	Related functions
	MM_C_SPK_APPEND
	5.2.3.4 MM_C_SPK_CLEAR

	Purpose
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	MM_E_NOERROR
	Update notifications
	MM_C_SPK_CLEAR_ON_PC
	Related functions
	MM_C_SPK_APPEND
	5.2.3.5 MM_C_SPK_GET

	Purpose
	Parameter structure for the function
	Response structure from the function
	Related functions
	MM_C_SPK_APPEND
	5.2.4 MM Comment Speaker list functions
	5.2.4.1 MM_C_CS_REMOVE

	Purpose
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	Update notifications
	MM_C_CS_REMOVE_ON_PC
	5.2.4.2 MM_C_CS_GET

	Purpose
	Parameter structure for the function
	Response structure from the function
	5.2.5 MM Notebook list functions
	5.2.5.1 MM_C_NBK_REMOVE

	Purpose
	Parameter Structure for the function
	Response structure from the function
	Error codes returned
	Update notifications
	MM_C_NBK_REMOVE_ON_PC
	Related Functions
	5.2.5.2 MM_C_NBK_CLEAR

	Purpose
	Clear the complete contents of the Notebook list
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	MM_E_NOERROR
	Update notifications
	MM_C_NBK_SET_ON_PC
	Related Functions
	MM_C_NBK_SET
	5.2.5.3 MM_C_NBK_GET

	Purpose
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	MM_E_NOERROR
	5.2.5.4 MM_C_NBK_SET

	Purpose
	Set the complete contents of the Notebook list
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	Update notifications
	MM_C_NBK_SET_ON_PC
	Related Functions
	MM_C_NBK_GET
	5.2.6 MM Request to Speak list functions
	5.2.6.1 MM_C_RTS_APPEND

	Purpose
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	Update notifications
	Related functions
	5.2.6.2 MM_C_RTS_REMOVE

	Purpose
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	Update notifications
	Related functions
	5.2.6.3 MM_C_RTS_CLEAR

	Purpose
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	MM_E_NOERROR
	Update notifications
	Related functions
	5.2.6.4 MM_C_RTS_GET

	Purpose
	Parameter structure for the function
	Response structure from the function
	Related functions
	MM_C_RTS_SET
	5.2.6.5 MM_C_RTS_SET

	Purpose
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	Update notifications
	MM_C_RTS_SET_ON_PC
	Related functions
	MM_C_RTS_GET
	5.2.6.6 MM_C_SHIFT

	Purpose
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	Update notifications
	5.2.7 MM Comment Request list functions
	5.2.7.1 MM_C_CR_REMOVE

	Purpose
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	Update notifications
	MM_C_CR_REMOVE_ON_PC
	Related functions
	MM_C_CR_GET
	5.2.7.2 MM_C_CR_GET

	Purpose
	Parameter structure for the function
	Response structure from the function
	Related functions
	MM_C_RTS_CLEAR_COMMENT
	5.2.7.3 MM_C_SHIFT_CR

	Purpose
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	Update notifications
	5.2.8 MM Speechtime functions
	5.2.8.1 MM_C_SET_SPEECHTIME_SETTINGS

	Purpose
	Parameter structure for the function
	Error codes returned
	MM_E_NOERROR
	Update notifications
	MM_C_TIMER_ON_OFF
	Related functions
	5.2.8.2 MM_C_LAST_MINUTE_WARNING

	Purpose
	Parameter structure for the function
	Error codes returned
	Related functions
	5.2.8.3 MM_C_TIME_FINISHED_WARNING

	Purpose
	Parameter structure for the function
	Error codes returned
	Related functions
	5.3 Update Notifications
	5.3.1 Introduction
	5.3.1.1 Update notification item explanation
	5.3.1.2 Unit/user event relations

	UNIT-EVENT MATRIX
	5.3.2 MM General notifications
	5.3.2.1 MM_C_SET_MIC_OPER_MODE_ON_PC

	Purpose
	Notify structure with this update
	5.3.2.2 MM_C_SET_ACTIVE_MICS_ON_PC

	Purpose
	Notify structure with this update
	5.3.2.3 MM_C_SET_SETTINGS_ON_PC

	Purpose
	Notify structure with this update
	The update comes with a structure as defined in section 5.2.2.7
	5.3.3 MM Speaker list notifications
	5.3.3.1 MM_C_MICRO_ON_OFF

	Purpose
	Notify structure with this update
	Examples
	5.3.3.2 MM_C_NR_CHAIR_MICS_ON

	Purpose
	Notify structure with this update
	5.3.3.3 MM_C_SPK_SET_ON_PC

	Purpose
	Notify structure with this update
	5.3.3.4 MM_C_SPK_CLEAR_ON_PC

	Purpose
	Notify structure with this update
	5.3.3.5 MM_C_SPK_APPEND_ON_PC

	Purpose
	Notify structure with this update
	5.3.3.6 MM_C_SPK_REMOVE_ON_PC

	Purpose
	Notify structure with this update
	5.3.3.7 MM_C_SPK_INSERT_ON_PC

	Purpose
	Notify structure with this update
	5.3.3.8 MM_C_SPK_REPLACE_ON_PC

	Purpose
	Notify structure with this update
	5.3.4 MM Comment Speaker list notifications
	5.3.4.1 MM_C_CS_CLEAR_ON_PC

	Purpose
	Notify structure with this update
	5.3.4.2 MM_C_CS_ADD_ON_PC

	Purpose
	Notify structure with this update
	5.3.4.3 MM_C_CS_REMOVE_ON_PC

	Purpose
	Notify structure with this update
	5.3.5 MM Notebook list notifications
	5.3.5.1 MM_C_NBK_REMOVE_ON_PC

	Notify structure with this update
	5.3.5.2 MM_C_NBK_SET_ON_PC

	Notify structure with this update
	5.3.6 MM Request to Speak list notifications
	5.3.6.1 MM_C_RTS_SET_ON_PC

	Purpose
	Notify structure with this update
	5.3.6.2 MM_C_RTS_CLEAR_ON_PC

	Purpose
	Notify structure with this update
	5.3.6.3 MM_C_RTS_REMOVE_ON_PC

	Purpose
	Notify structure with this update
	5.3.6.4 MM_C_RTS_FIRST_ON_PC

	Purpose
	Notify structure with this update
	5.3.6.5 MM_C_RTS_INSERT_ON_PC

	Purpose
	Notify structure with this update
	5.3.6.6 MM_C_RTS_REPLACE_ON_PC

	Purpose
	Notify structure with this update
	5.3.7 MM Comment Request list notifications
	5.3.7.1 MM_C_CR_CLEAR_ON_PC

	Purpose
	Notify structure with this update
	5.3.7.2 MM_C_CR_ADD_ON_PC

	Purpose
	Notify structure with this update
	5.3.7.3 MM_C_CR_REMOVE_ON_PC

	Purpose
	Notify structure with this update
	5.3.7.4 MM_C_CR_REPLACE_ON_PC

	Purpose
	Notify structure with this update
	5.3.8 MM Speechtime notifications
	5.3.8.1 MM_C_TIMER_ON_OFF

	Purpose
	Notify structure with this update
	6. Camera Control
	6.1 Introduction
	6.1.1 Remote Camera Control Control

	6.2 Remote Functions
	6.2.1 Introduction
	6.2.1.1 Remote function item explanation

	6.2.2 CC General functions
	6.2.2.1 CC_C_START_CAMERA_APP

	Purpose
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	Related functions
	CC_C_STOP_CAMERA_APP
	6.2.2.2 CC_C_STOP_CAMERA_APP

	Purpose
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	Related functions
	CC_C_START_CAMERA_APP
	6.2.2.3 CC_C_SET_CAMERA_ACTIVITY

	Purpose
	Parameter structure for the function
	Response structure from the function
	The function has no response parameters
	Error codes returned
	Update notifications
	CC_C_RECEIVE_DATA
	6.2.2.4 CC_C_SET_GLOBAL_SETTINGS

	Purpose
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	Related functions
	6.2.2.5 CC_C_GET_GLOBAL_SETTINGS

	Purpose
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	CC_E_NOERROR
	Related functions
	6.2.2.6 CC_C_SET_CAMERA_ASSIGNMENT

	Purpose
	Parameter structure for the function
	Error codes returned
	Related functions
	6.2.2.7 CC_C_CLEAR_CAMERA_ASSIGNMENTS

	Purpose
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	6.2.2.8 CC_C_SET_CAMERA_ID

	Purpose
	Parameter structure for the function
	Error codes returned
	6.2.2.9 CC_C_CLEAR_CAMERA_IDS

	Purpose
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	6.2.2.10 CC_C_SEND_DATA

	Purpose
	Parameter structure for the function
	Error codes returned
	Update notifications
	CC_C_RECEIVE_DATA
	6.3 Update Notifications
	6.3.1 Introduction
	6.3.1.1 Update notification item explanation
	6.3.1.2 Unit/user event relations

	6.3.2 CC General notifications
	6.3.2.1 CC_C_RECEIVE_DATA

	Purpose
	Notify structure with this update
	The update comes with the same structure as described in 6.2.2.10 (CC_T_DATA_FRAME).
	7. Simultaneous Interpretation
	7.1 Introduction
	7.1.1 Remote Simultaneous Interpretation Control

	7.2 Remote Functions
	7.2.1 Introduction
	7.2.2 Remote function item explanation
	7.2.3 IN General functions
	7.2.3.1 IN_C_SIGNAL_CCU

	Remarks
	Purpose
	Parameter structure for the function
	Response structure from the function
	Update notifications
	7.2.3.2 IN_C_START_IN_APP

	Purpose
	Parameter structure for the function
	Response structure from the function
	The function returns the following structure
	Error codes returned
	Update notifications
	Related functions
	IN_C_STOP_IN_APP
	7.2.3.3 IN_C_STOP_IN_APP

	Purpose
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	Related functions
	IN_C_START_IN_APP
	7.2.3.4 IN_C_START_MON_IN

	Purpose
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	IN_E_NOERROR
	Update notifications
	Related functions
	IN_C_STOP_MON_IN
	7.2.3.5 IN_C_STOP_MON_IN

	Purpose
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	IN_E_NOERROR
	Related functions
	IN_C_START_MON_IN
	7.2.3.6 IN_C_DESK_UPDATE

	Purpose
	Parameter structure for the function
	Error codes returned
	7.2.3.7 IN_C_BOOTH_UPDATE

	Purpose
	Parameter structure for the function
	Error codes returned
	7.2.3.8 IN_C_UPDATE_LOCK

	Purpose
	Parameter structure for the function
	Error codes returned
	7.2.3.9 IN_C_LOAD_INT_DB

	Purpose
	Parameter structure for the function
	Error codes returned
	Related functions
	7.2.3.10 IN_C_CHANNEL_UPDATE

	Purpose
	Parameter structure for the function
	Error codes returned
	7.2.3.11 IN_C_DOWNLOAD_LANGLIST

	Purpose
	Parameter structure for the function
	Error codes returned
	Update notifications
	IN_C_LANGUAGE_LIST
	7.2.3.12 IN_C_SET_FLASH_MIC_ON

	Purpose
	Parameter structure for the function
	Error codes returned
	Update notifications
	IN_C_FLASHING_MIC_ON
	7.2.3.13 IN_C_SET_FLOOR_DIST

	Purpose
	Parameter structure for the function
	Error codes returned
	Update notifications
	IN_C_FLOOR_DISTRIBUTION
	Related functions
	IN_C_GET_FLOOR_DIST
	7.2.3.14 IN_C_GET_FLOOR_DIST

	Purpose
	Parameter structure for the function
	Response structure from the function
	Related functions
	IN_C_SET_FLOOR_DIST
	7.2.3.15 IN_C_SET_SPEAKSLOWLY_SIGN

	Purpose
	Parameter structure for the function
	Error codes returned
	Update notifications
	IN_C_SPEAKSLOWLY_SIGN
	Related functions
	IN_C_GET_SPEAKSLOWLY_SIGN
	7.2.3.16 IN_C_GET_SPEAKSLOWLY_SIGN

	Purpose
	Parameter structure for the function
	Response structure from the function
	Related functions
	IN_C_SET_SPEAKSLOWLY_SIGN
	7.2.3.17 IN_C_SET_HELP_SIGN

	Purpose
	Parameter structure for the function
	Error codes returned
	Update notifications
	IN_C_HELP_SIGN
	Related functions
	IN_C_GET_HELP_SIGN
	7.2.3.18 IN_C_GET_HELP_SIGN

	Purpose
	Parameter structure for the function
	Response structure from the function
	Related functions
	IN_C_SET_HELP_SIGN
	7.2.3.19 IN_C_ASSIGN_UNIT

	Purpose
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	Related functions
	7.2.3.20 IN_C_UNASSIGN_UNIT

	Purpose
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	Related functions
	7.3 Update Notifications
	7.3.1 Introduction
	7.3.1.1 Update notification item explanation
	7.3.1.2 Unit/user event relations

	7.3.2 IN General notifications
	7.3.2.1 IN_C_CHAN_STATUS

	Purpose
	Notify structure with this update
	7.3.2.2 IN_C_CCU_CONFIG

	Purpose
	Notify structure with this update
	7.3.2.3 IN_C_FLASHING_MIC_ON

	Purpose
	Notify structure with this update
	7.3.2.4 IN_C_FLOOR_DISTRIBUTION

	Purpose
	Notify structure with this update
	7.3.2.5 IN_C_LANGUAGE_LIST

	Purpose
	Notify structure with this update
	7.3.2.6 IN_C_SPEAKSLOWLY_SIGN

	Purpose
	Notify structure with this update
	7.3.2.7 IN_C_HELP_SIGN

	Purpose
	Notify structure with this update
	8. Parliamentary and Mutli Voting
	8.1 Internal Functioning Voting application
	8.1.1 Voting subject
	8.1.2 Voting kind
	8.1.3 General Voting setting
	8.1.4 Communication settings
	8.1.4.1 Result structure format definition

	Delegate voting result organization
	8.1.5 Default settings voting application
	8.1.5.1 Standalone settings

	8.1.6 Allowed settings without delegate-database present
	8.2 Remote Functions
	8.2.1 Introduction
	8.2.1.1 Remote function item explanation

	8.2.2 Voting functions
	8.2.2.1 VT_C_START_APP

	Purpose
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	Related functions
	VT_C_STOP_APP
	8.2.2.2 VT_C_STOP_APP

	Purpose
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	Related functions
	VT_C_START_APP
	8.2.2.3 VT_C_START_VOTING

	Purpose
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	Update notifications
	VT_C_RESULTSNOTIFY
	Related functions
	8.2.2.4 VT_C_STOP_VOTING

	Purpose
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	Related functions
	8.2.2.5 VT_C_HOLD_VOTING

	Purpose
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	Related functions
	8.2.2.6 VT_C_RESTART_VOTING

	Purpose
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	Update notifications
	VT_C_RESULTSNOTIFY
	Related functions
	8.2.2.7 VT_C_DOWNLOAD_SUBJECT

	Purpose
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	8.2.2.8 VT_C_SET_VOTINGPARAMS

	Purpose
	Error codes returned
	Related functions
	VT_C_START_VOTING
	8.2.2.9 VT_C_SET_GLOBAL_SETTINGS

	Purpose
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	8.2.2.10 VT_C_GET_RESULTS

	Purpose
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	Related functions
	8.2.2.11 VT_C_GET_ATTENTION_TONE

	Purpose
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	Related functions
	8.2.2.12 VT_C_SET_ATTENTION_TONE

	Purpose
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	Related functions
	8.2.2.13 VT_C_START_ATTENTION_TONE

	Purpose
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	Related functions
	8.3 Update Notifications
	8.3.1 Introduction
	8.3.2 Notification item explanation
	8.3.2.1 Unit/User Event relations

	8.3.3 Voting notifications
	8.3.3.1 VT_C_RESULTSNOTIFY

	Purpose
	Notify structure with this update
	Related functions
	9. Attendance Registration and Access Control
	9.1 Internal functioning of Attendance registration
	9.1.1 Introduction
	9.1.1.1 Attendance registration
	9.1.1.2 Access Control
	9.1.1.3 Delegate Identification
	9.1.1.4 Combination Attendance and Access

	9.1.2 Functioning with parameters
	9.1.2.1 State definitions
	9.1.2.2 Events definitions
	9.1.2.3 Parameter definitions
	9.1.2.4 Event / state matrix

	9.2 Remote Functions
	9.2.1 Introduction
	9.2.1.1 Remote function item explanation

	9.2.2 Attendance/Access functions
	9.2.2.1 AT_C_START_AT_APP

	Purpose
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	Related functions
	AT_C_STOP_AT_APP
	9.2.2.2 AT_C_STOP_AT_APP

	Purpose
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	Related functions
	AT_C_START_AT_APP
	9.2.2.3 AT_C_STORE_SETTING

	Purpose
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	Related functions
	9.2.2.4 AT_C_ACTIVATE

	Parameter structure for the function
	Error codes returned
	Update notifications
	Related Functions
	9.2.2.5 AT_C_HANDLE_IDENTIFICATION

	Purpose
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	Update notifications
	Related functions
	9.2.2.6 AT_C_GET_INDIV_REGISTRATION

	Purpose
	Parameter structure for the function
	Error codes returned
	Update notifications
	Related functions
	AT_C_START_AT_APP
	9.3 Update Notifications
	9.3.1 Introduction
	9.3.1.1 Preconditions
	9.3.1.2 Notification item explanation

	9.3.2 Attendance Registration and Access Control notifications
	9.3.2.1 AT_C_SEND_INDIV_REGISTRATION

	Purpose
	Notify structure with this update
	Related functions
	9.3.2.2 AT_C_SEND_TOTAL_REGISTRATION

	Purpose
	Notify structure with this update
	10. Text & Status Display for a Remote interface
	10.1 Introduction
	10.1.1 Remote Text & Status Display Control

	10.2 Remote Functions
	10.2.1 Introduction
	10.2.1.1 Remote function item explanation

	10.2.2 LD General functions
	10.2.2.1 LD_C_START_LD_APP

	Purpose
	Parameter structure for the function
	Response structure from the function
	The function has no response parameters
	Error codes returned
	Related functions
	LD_C_STOP_LD_APP
	10.2.2.2 LD_C_STOP_LD_APP

	Purpose
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	Related functions
	LD_C_START_LD_APP
	10.2.2.3 LD_C_STORE_DISPLAY_SETTING

	Purpose
	Parameter structure for the function
	Response structure from the function
	The function has no response parameters
	Error codes returned
	Update notifications
	LD_C_SEND_ANUM_DATA
	10.2.2.4 LD_C_CLEAR_DISPLAY_NR

	Purpose
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	Update notifications
	LD_C_SEND_ANUM_DATA
	10.3 Update Notifications
	10.3.1 Introduction
	10.3.1.1 Update notification item explanation
	10.3.1.2 Unit/user event relations

	MM application
	MD application
	VT application
	10.3.2 LD General notifications
	10.3.2.1 LD_C_SEND_ANUM_DATA

	Purpose
	Notify structure with this update
	11. Message Distribution for a Remote interface
	11.1 Introduction
	11.1.1 Remote Message Distribution Control

	11.2 Remote Functions
	11.2.1 Introduction
	11.2.1.1 Remote function item explanation

	11.2.2 Message Distribution functions
	11.2.2.1 MD_C_START_MON_MD

	Purpose
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	MD_E_NOERROR
	Related functions
	MD_C_STOP_MON_MD
	11.2.2.2 MD_C_STOP_MON_MD

	Purpose
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	MD_E_NOERROR
	Related functions
	MD_C_START_MON_MD
	11.2.2.3 MD_C_SEND_MESSAGE_TO_UNITS

	Purpose
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	11.2.2.4 MD_C_CLEAR_MESSAGE_ON_UNITS

	Purpose
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	MD_E_NOERROR
	11.2.2.5 MD_C_AUX_LED_CONTROL

	Related functions
	MD_C_REQ_BUTTON_ON_OFF
	11.3 Update Notifications
	11.3.1 Introduction
	11.3.1.1 Update notification item explanation
	11.3.1.2 Unit/user event relations

	11.3.2 MD General Notifications
	11.3.2.1 MD_C_REQ_BUTTON_ON_OFF

	Purpose
	Notify structure with this update
	12. Intercom for a Remote interface
	12.1 Introduction
	12.1.1 Remote Intercom Control

	12.2 Remote Functions
	12.2.1 Introduction
	12.2.1.1 Remote function item explanation

	12.2.2 Intercom functions
	12.2.2.1 IC_C_START_IC_APP

	Purpose
	Parameter structure for the function
	The function has no additional parameters.
	Response structure from the function
	Error codes returned
	Update notifications
	Related functions
	IC_C_CLOSE_IC_APP
	12.2.2.2 IC_C_CLOSE_IC_APP

	Purpose
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	IC_E_NOERROR
	Related functions
	IC_C_START_IC_APP
	12.2.2.3 IC_C_SET_LINKS

	Purpose
	Parameter structure for the function
	Error codes returned
	12.2.2.4 IC_C_CLEAR_ LINKS

	Purpose
	Parameter structure for the function
	Response structure from the function
	Error codes returned
	IC_E_NOERROR
	12.3 Update Notifications
	12.3.1 Introduction
	12.3.1.1 Update notification item explanation
	12.3.1.2 Unit/user event relations

	12.3.2 Intercom notifications
	12.3.2.1 IC_UPD_AVAILABLE_LINES

	Purpose
	Notify structure with this update
	12.3.2.2 IC_UPD_OPERATOR_STATE

	Purpose
	Notify structure with this update
	12.3.2.3 IC_UPD_CONNECTION_INFO

	Purpose
	Notify structure with this update
	12.3.2.4 IC_UPD_INCOMING_CALL

	Purpose
	Notify structure with this update
	Appendix A. Protocol, TCP/IP setting
	A.1. TCP/IP port setting DCN-CCU

	Appendix B. Values of the defines
	B.1. Defines sorted on application
	B.2. Defines sorted on alphabet

	Appendix C. Error Codes
	Appendix D. Examples
	D.1. System Configuration
	D.1.1. Assigning seats using global installation
	D.1.2. Replacing defective units during operation

	D.2. Microphone Management
	D.2.1. Microphone Management Control

	D.3. Camera Control
	D.3.1. Controlling CC application

	D.4. Simultaneous Interpretation
	D.4.1. Simultaneous Interpretation Control

	D.5. Voting
	D.5.1. Running a vote round without update notifications

	Declaration of parameters
	Connecting to the voting application
	Preparing the voting
	Running each vote round
	Terminating the voting applications
	D.6. Attendance Registration and Access Control
	D.6.1. Using Attendance Registration and Access Control

	D.7. Text & Status Display (LD)
	D.7.1. Controlling LD application

	D.8. Message Distribution
	D.8.1. Sending a Message

	D.9. Intercom
	D.9.1. Intercom without update notifications

	Appendix E. Open interface changes in DcnNg 4.0
	E.1. Changes with respect to DcnNg 3.1
	E.2. Changes with respect to DcnNg 2.68

