

Choose Scandinavian trust

RADIO TEST REPORT – 431081-1R1TRFWL

Type of assessment:

Final product testing

Applicant:

Bosch Security Systems, Inc.

Model:

RFRP2

FCC ID:

TX3-RWS2

Product name (type): Wireless transceiver

IC Registration number:

1249A-RWS2

Specifications:

- FCC 47 CFR Part 15, Subpart C, §15.231
- RSS-210 Annex A.1, Issue 10, December 2019

Date of issue: November 9, 2021

Kevin Rose, EMC/RF Specialist

Tested by

Signature

Mark Libbrecht, EMC/RF Specialist Reviewed by

Signature

Nemko Canada Inc., a testing laboratory, is accredited by the Standards Council of Canada. The tests included in this report are within the scope of this accreditation

FCC 15.231 and RSS-210 A1.1.docx; Date: April 2020

Company name	Nemko Canada Ir	IC.			
Facilities	Ottawa site:		Montréal site:	Cambridge site:	Almonte site:
	303 River Road		292 Labrosse Avenue	1-130 Saltsman Drive	1500 Peter Robinson Road
	Ottawa, Ontario		Pointe-Claire, Québec	Cambridge, Ontario	West Carleton, Ontario
	Canada		Canada	Canada	Canada
	K1V 1H2		H9R 5L8	N3E 0B2	KOA 1LO
	Tel: +1 613 737 9	680	Tel: +1 514 694 2684	Tel: +1 519 650 4811	Tel: +1 613 256-9117
	Fax: +1 613 737 9	691	Fax: +1 514 694 3528		Fax: +1 613 256-8848
Test site registration	Organization	Recogni	ition numbers and location		
	FCC/ISED	FCC: CA	2040; IC: 2040A-4 (Ottawa/Alm	onte); FCC: CA2041; IC: 2040G-5	6 (Montreal); CA0101 (Cambridge)
Website	www.nemko.com	<u>1</u>			

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contained in this report are within Nemko Canada's ISO/IEC 17025 accreditation.

Copyright notification

Nemko Canada Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. © Nemko Canada Inc.

Table of contents

Table of	contents	3
Section 1	. Report summary	4
1.1	Test specifications	4
1.2	Test methods	4
1.3	Exclusions	4
1.4	Statement of compliance	4
1.5	Test report revision history	4
Section 2	2. Engineering considerations	5
2.1	Modifications incorporated in the EUT for compliance	5
2.2	Technical judgment	5
2.3	Deviations from laboratory tests procedures	5
Section a	3. Test conditions	6
3.1	Atmospheric conditions	6
3.2	Power supply range	6
Section 4	I. Measurement uncertainty	7
4.1	Uncertainty of measurement	7
Section	j. Information provided by the applicant	8
5.1	Disclaimer	8
5.2	Applicant	8
5.3	Manufacturer	8
5.4	EUT information	8
5.5	Technical information	9
5.6	EUT setup details	9
Section	5. Summary of test results	. 12
6.1	Testing location	. 12
6.2	Testing period	. 12
6.3	Sample information	. 12
6.4	FCC Part 15 Subpart C, general requirements test results	. 12
6.5	FCC Part 15 Subpart C, intentional radiators test results	. 12
6.6	ISED RSS-Gen, Issue 5, test results	. 13
6.7	ISED RSS-210, Issue 10, test results	. 13
Section	7. Test equipment	. 14
7.1	Test equipment list	. 14
Section 8	3. Testing data	. 15
8.1	FCC 15.31(e) Variation of power source	. 15
8.2	FCC 15.31(m) and RSS-Gen 6.9 Number of frequencies	. 16
8.3	FCC 15.203 and RSS-Gen, section 6.8 Antenna requirement	
8.4	FCC 15.207(a) and RSS-Gen 8.8 AC power line conducted emissions limits	. 18
8.5	FCC 15.231(a) and RSS-210 A.1.1 Conditions for intentional radiators to comply with periodic operation	. 21
8.6	FCC 15.231(b) and RSS-210 A.1.2 Field strength of emissions	. 25
8.7	FCC 15.231(c) and RSS-210 A.1.3 Emission bandwidth of momentary signals	
Section		
9.1	Radiated emissions set-up for frequencies below 1 GHz	
9.2	Radiated emissions set-up for frequencies above 1 GHz	
9.3	Conducted emissions set-up	33
	Antenna port set-up	

Section 1. Report summary

1.1 Test specifications

Nèmko

FCC 47 CFR Part 15, Subpart C, Clause 15.231	Periodic operation in the band 40.66–40.70 MHz and above 70 MHz
RSS-210 Annex A.1, Issue 10, December 2019	Licence-Exempt Radio Apparatus: Category I Equipment. Momentarily operated devices

1.2 Test methods

ANSI C63.10 v2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
RSS-Gen, Issue 5, March 2019	General Requirements for Compliance of Radio Apparatus
RSS-102, Issue 5, March 19, 2015	Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)

1.3 Exclusions

None

1.4 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was performed against all relevant requirements of the test standard except as noted in section 1.3 above. Results obtained indicate that the product under test complies In full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

1.5 Test report revision history

Table 1.5-1: Test report revision history

Revision #	Date of issue	Details of changes made to test report
TRF	October 20, 2021	Original report issued
R1TRF	November 9, 2021	Update center frequency to 433.42 MHz throughout

Section 2. Engineering considerations

2.1 Modifications incorporated in the EUT for compliance

There were no modifications performed to the EUT during this assessment.

2.2 Technical judgment

None

2.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.

Section 3. Test conditions

3.1 Atmospheric conditions

Temperature	15 °C – 35 °C
Relative humidity	20 % - 75 %
Air pressure	86 kPa (860 mbar) – 106 kPa (1060 mbar)

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

3.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.

Section 4. Measurement uncertainty

4.1 Uncertainty of measurement

Nèmko

UKAS Lab 34 and TIA-603-B have been used as guidance for measurement uncertainty reasonable estimations with regards to previous experience and validation of data. Nemko Canada, Inc. follows these test methods in order to satisfy ISO/IEC 17025 requirements for estimation of uncertainty of measurement for wireless products.

Measurement uncertainty budgets for the tests are detailed below. Measurement uncertainty calculations assume a coverage factor of K = 2 with 95% certainty.

Table 4.1-1: Measurement uncertainty	calculations	for Radio
--------------------------------------	--------------	-----------

Test name	Measurement uncertainty, ±dB
All antenna port measurements	0.55
Occupied bandwidth	4.45
Conducted spurious emissions	1.13
Radiated spurious emissions	3.78
AC power line conducted emissions	3.55

Section 5. Information provided by the applicant

5.1 Disclaimer

Nèmko

This section contains information provided by the applicant and has been utilized to support the test plan. Inaccurate information provided by the applicant can affect the validity of the results contained within this test report. Nemko accepts no responsibility for the information contained within this section and the impact it may have on the test plan and resulting measurements.

5.2 Applicant

Company name	Bosch Security Systems, Inc.
Address	130 Perinton Parkway, Fairport, New York, United States, 14450

5.3 Manufacturer

Company name	Bosch Security Systems, Inc.
Address	130 Perinton Parkway, Fairport, New York, United States, 14450

5.4 EUT information

Product name	Wireless transceiver
Model	RFRP2
Serial number	042234617501010158 and 042234617501010099
Part number	F01U389906
Operating conditions	The EUT was 100% transmitting during testing.
Product description and theory of operation	The RADION repeater is a wireless repeater device that retransmits messages received from other RADION detectors (Door Contacts, Smoke Detectors etc.) and other repeaters, for the purpose of improving the overall communication reliability of the RADION wireless system. It provides a secondary communication path for the detectors and helps in extending the range of a detector that must be installed beyond its maximum communication range. In addition to repeating transmissions from other RDION devices, the RFRP2 transmits its own periodic supervision every 13 minutes and transmits the device status such as Tamper, Battery, and Power Supply, if there if a change is detected for these inputs.

5.5 Technical information

lèmko

Applicant IC company number	1249A
IC UPN number	RWS2
All used IC test site(s) Reg. number	2040A-4
RSS number and Issue number	RSS-210 Issue 10, Annex A.1
Operation type	Periodic Periodic
	□ Non-periodic
Frequency band	433.42 MHz
Frequency Min (MHz)	433.37
Frequency Max (MHz)	433.47
Channel numbers	1
RF power Max (W), Conducted	ΝΑ
Field strength, dBµV/m @ 3 m	80.4
Measured BW (kHz), 99% OBW	98.5
Type of modulation	ООК
Emission classification	ООК
Transmitter spurious, dBµV/m @ 3 m	30.7 Average, 866.83 MHz
Power supply requirements	12 Vdc
Antenna information	Manufacturer: Bosch PCB with 2.15 dBd Gain. Model: RFRP2

5.6 EUT setup details

5.6.1 EUT Exercise and monitoring

Methods used to exercise the EUT and all relevant ports:

- EUT was place in a 100 % TX on state

Configuration details:

- The EUT setup in a configuration that was expected to produce the highest amplitude emissions relative to the limit and that satisfy normal
 operation/installation practice by the end user.
- The type and construction of cables used in the measurement set-up were consistent with normal or typical use. Cables with mitigation features (for example, screening, tighter/more twists per length, ferrite beads) have been noted below:
 None
- The EUT was setup in a manner that was consistent with its typical arrangement and use. The measurement arrangement of the EUT, local AE and associated cabling was representative of normal practice. Any deviations from typical arrangements have been noted below:
 None

Monitoring details:

None

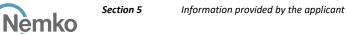
5.6 EUT setup details, continued

Section 5

5.6.2 EUT test configuration

Nèmko

Table 5.6-1: EUT sub assemblies				
Description Brand name Serial number, Part number, Model, Revision level				
Wireless transceiver (Conducted emissions)	Bosch	SN: 042234617501010158, PN: F01U389906, MN: RFRP2		
Wireless transceiver (Radiated emissions)	Bosch	SN: 042234617501010099, PN: F01U389906, MN: RFRP2		
ITE/Medical Power Supply	GlobTek, Inc	SN: 488956108/19, PN: WR9QE1500T00NAIMR6B, MN: GTM96180-1817.9-5.9		


Table 5.6-2: EUT interface ports

Description	Qty.
Power input	1

Table 5.6-3: Support equipment				
Description	Brand name	Serial number, Part number, Model, Revision level		
24-Line Digital I/O	National Instruments	SN: 1FA2276, PN: 192317E-01L, MN: USB-6501		
Wireless receiver	Bosch	SN: 092218703702160003, PN: F01U253616, MN: RFRP		
Wireless transmitter	Bosch	SN: 092083307907700117, PN: F01U323777, MN: RFUN-A		
192 kHz DAC Converter	Uzvuvzk	None		
Laptop Computer	Latitude E7440	None		

Table 5.6-4: Inter-connection cables

Cable description	From	То	Length (m)
DC power cable	Power input	Wireless transceiver	1.5

5.6 EUT setup details, continued

5.6.2 EUT test configuration, continued

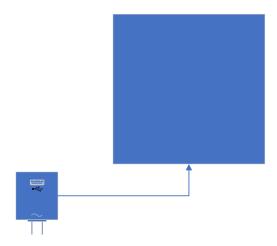
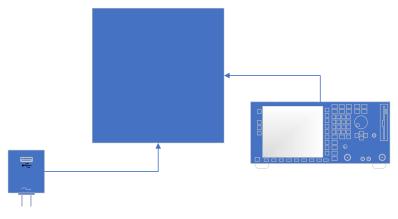
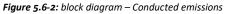




Figure 5.6-1: block diagram – Radiated emissions

Section 6. Summary of test results

6.1	Testing location			
Test lo	cation (s)	Ottawa		
163110		Ollawa		
6.2	Testing period			
Test st	art date	September 1, 2021	Test end date	September 14, 2021
6.3	Sample informatio	n		
Receip	t date	September 1, 2021	Nemko sample ID number(s)	1 and 2
6.4	FCC Part 15 Subpar	t C, general requirements test	results	
		Table 6.4-1: FCC ge	neral requirements results	

Part	Test description	Verdict
§15.207(a)	Conducted limits	Pass
§15.31I	Variation of power source	Pass
§15.31(m)	Number of tested frequencies	Pass
§15.203	Antenna requirement	Pass

Notes: Choose an item.

6.5 FCC Part 15 Subpart C, intentional radiators test results

Table 6.5-1: FCC 15.231 requirements results

Test description	Verdict
Conditions for intentional radiators to comply with periodic operation	Pass
Field strength of emissions	Pass
Emission bandwidth	Pass
Requirements for devices operating within 40.66–40.70 MHz band	Not applicable ¹
Conditions for intentional radiators to comply with periodic operation	Not applicable
	Conditions for intentional radiators to comply with periodic operation Field strength of emissions Emission bandwidth Requirements for devices operating within 40.66–40.70 MHz band

Notes: ¹EUT does not operate in 40.66–40.70 MHz band

6.6 ISED RSS-Gen, Issue 5, test results

Table 6.6-1: RSS-Gen results

Part	Test description	Verdict
7.3	Receiver radiated emission limits	Not applicable
7.4	Receiver conducted emission limits	Not applicable
6.9	Operating bands and selection of test frequencies	Pass
8.8	AC power-line conducted emissions limits	Pass
RSS-102, 252	Exemption Limits for Routine Evaluation — RF Exposure Evaluation	Pass

Notes: ¹According to sections 5.2 and 5.3 of RSS-Gen, Issue 5 the EUT does not have a stand-alone receiver neither scanner receiver, therefore exempt from receiver requirements.

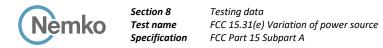
Choose an item.

6.7 ISED RSS-210, Issue 10, test results

Table 6.7-1: RSS-210 results

Test description	Verdict
Technical requirements	Pass
Field strengths	Pass
Bandwidth of momentary signals	Pass
Reduced field strengths	Not applicable
	Technical requirements Field strengths Bandwidth of momentary signals

Notes: None


Section 7. Test equipment

7.1 Test equipment list

Nèmko

Table 7.1-1: Equipment list					
Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
3 m EMI test chamber	TDK	SAC-3	FA002047	1 year	March 26, 2022
Flush mount turntable	Sunol	FM2022	FA002082	_	NCR
Controller	Sunol	SC104V	FA002060	_	NCR
Antenna mast	Sunol	TLT2	FA002061	_	NCR
Receiver/spectrum analyzer	Rohde & Schwarz	ESU 26	FA002043	1 year	November 6, 2021
Horn (1–18 GHz)	ETS Lindgren	3117	FA002840	1 year	February 2, 2022
Preamp (1–18 GHz)	ETS Lindgren	124334	FA002873	1 year	October 13, 2021
Bilog antenna (20–3000 MHz)	Sunol	JB3	FA002108	1 year	February 2, 2022
Receiver/spectrum analyzer	Rohde & Schwarz	ESU 40	FA002071	1 year	March 16, 2022
LISN	Rohde & Schwarz	ENV216	FA002514	1 year	January 29, 2022

Note: NCR - no calibration required, VOU - verify on use

Section 8. Testing data

8.1 FCC 15.31(e) Variation of power source

8.1.1 References, definitions and limits

For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.

8.1.2 Test summary

Verdict		Pass					
Tested by		Kevin Rose	Test date	Test date		September 1, 2021	
8.1.3	Observations, settin	igs and special notes					
None							
None							
8.1.4	Test data						
				_	_	_	
EUT Powe	er requirements:			\bowtie AC	🗆 DC	🖾 Battery	
	If EUT is an AC or a DC po	owered, was the noticeable outp	ut power variation observed?	□ YES	🖾 NO	□ N/A	
	If EUT is battery operated	d, was the testing performed usi	ng fresh batteries?	🖂 YES	□ NO	🗆 N/A	

······································			
If EUT is rechargeable battery operated, was the testing performed using fully charged batteries?	□ YES	□ NO	🖾 N/A

8.2 FCC 15.31(m) and RSS-Gen 6.9 Number of frequencies

8.2.1 References, definitions and limits

FCC:

Measurements on intentional radiators or receivers shall be performed and, if required, reported for each band in which the device can be operated with the device operating at the number of frequencies in each band specified in the following table.

ISED:

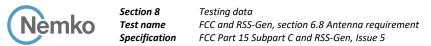
Except where otherwise specified, measurements shall be performed for each frequency band of operation for which the radio apparatus is to be certified, with the device operating at the frequencies in each band of operation shown in table below. The frequencies selected for measurements shall be reported in the test report.

Frequency range over which the device		Location of measurement frequency inside the
operates (in each band)	Number of test frequencies required	operating frequency range
1 MHz or less	1	Center (middle of the band)
1–10 MHz	2	1 near high end, 1 near low end
Greater than 10 MHz	3	1 near high end, 1 near center and 1 near low end

Note: "near" means as close as possible to or at the centre / low end / high end of the frequency range over which the device operates.

NA

8.2.2	Test summary				
		_			
Verdict		Pass			
Tested by		Kevin Rose		Test date	September 1, 2021
8.2.3	Observations, setti	ngs and special notes			
None					
8.2.4	Test data				
		;	Table 8.2-2: Test channe	ls selection	
			uency range lwidth, MHz Lov	w channel, MHz Mid chan	nnel, MHz High channel, MHz


NA

433.42

433.42

433.42

NA

8.3 FCC 15.203 and RSS-Gen, section 6.8 Antenna requirement

8.3.1 References, definitions and limits

FCC:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

ISED:

The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report.

8.3.2	Test summary					
Verdict		Pass				
Tested by		Kevin Rose		Test date		September 1, 2021
8.3.3	Observations, settin	gs and special notes				
None						
8.3.4	Test data					
Does the E	UT be professionally insta UT have detachable anter If detachable, is the anter		⊠ YES □ YES □ YES	□ NO ⊠ NO □ NO	⊠ N/A	

8.4 FCC 15.207(a) and RSS-Gen 8.8 AC power line conducted emissions limits

8.4.1 References, definitions and limits

FCC:

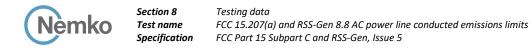
Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50μ H/ 50Ω line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

ISED:

A radio apparatus that is designed to be connected to the public utility (AC) power line shall ensure that the radio frequency voltage, which is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz, shall not exceed the limits in table below.

Unless the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in table below. The more stringent limit applies at the frequency range boundaries.

Table 8.4-1: Conducted emissions limit


Frequency of emission,	Conduct	ed limit, dBμV
MHz	Quasi-peak	Average**
0.15–0.5	66 to 56*	56 to 46*
0.5–5	56	46
5–30	60	50

Note: * - *The level decreases linearly with the logarithm of the frequency.*

** - A linear average detector is required.

8.4.2 Test summary

Verdict	Pass		
Tested by	Kevin Rose	Test date	September 6, 2021

8.4.3 Observations, settings and special notes

The EUT was set up as tabletop configuration.

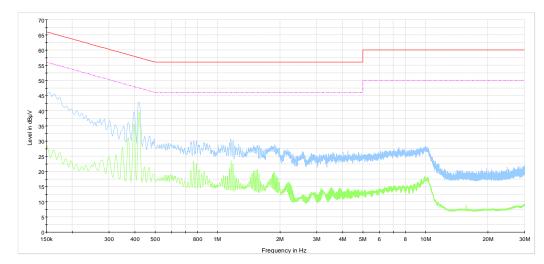
The spectral scan has been corrected with transducer factors (i.e. cable loss, LISN factors, and attenuators) for determination of compliance.

A preview measurement was generated with the receiver in continuous scan mode. Emissions detected within 6 dB or above limit were re-measured with the appropriate detector against the correlating limit and recorded as the final measurement.

Receiver settings for preview measurements:

Resolution bandwidth	9 kHz
Video bandwidth	30 kHz
Detector mode	Peak and Average
Trace mode	Max Hold
Measurement time	1000 ms

Receiver settings for final measurements:

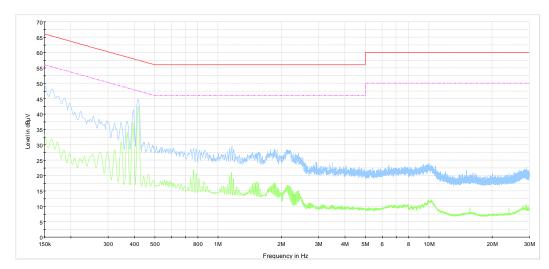

Resolution bandwidth	9 kHz
Video bandwidth	30 kHz
Detector mode	Quasi-Peak and Average
Trace mode	Max Hold
Measurement time	1000 ms

Section 8 Test name Specification

Testing data FCC 15.207(a) and RSS-Gen 8.8 AC power line conducted emissions limits FCC Part 15 Subpart C and RSS-Gen, Issue 5

8.4.4 Test data

 NEX-431081 - August 17, 2021 - 120 VAC, 60 Hz - Phase


 Preview Result 2-AVG

 Preview Result 1-FK+

 CISPR 32 Limit - Class B, Mains (QP)

 CISPR 32 Limit - Class B, Mains (Avg)

Plot 8.4-1: Conducted emissions on phase line

NEX-431081 - August 17, 2021 - 120 VAC, 60 Hz - Neutral Preview Result 2-AVG Preview Result 1-PK+ CISPR 32 Limit - Class B, Mains (QP) CISPR 32 Limit - Class B, Mains (Avg)

Plot 8.4-2: Conducted emissions on neutral line

FCC 15.231(a) and RSS-210 A.1.1 Conditions for intentional radiators to comply with periodic operation 8.5

8.5.1 References, definitions and limits

Section 8

FCC:

- The provisions of this section are restricted to periodic operation within the band 40.66–40.70 MHz and above 70 MHz. Except as shown in (a) paragraph (e) of this section, the intentional radiator is restricted to the transmission of a control signal such as those used with alarm systems, door openers, remote switches, etc. Continuous transmissions, voice, video and the radio control of toys are not permitted. Data is permitted to be sent with a control signal. The following conditions shall be met to comply with the provisions for this periodic operation:
 - A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of (1) being released.
 - A transmitter activated automatically shall cease transmission within 5 seconds after activation. (2)
 - Periodic transmissions at regular predetermined intervals are not permitted. However, polling or supervision transmissions, including data, (3) to determine system integrity of transmitters used in security or safety applications are allowed if the total duration of transmissions does not exceed more than two seconds per hour for each transmitter. There is no limit on the number of individual transmissions, provided the total transmission time does not exceed two seconds per hour.
 - Intentional radiators which are employed for radio control purposes during emergencies involving fire, security, and safety-of-life, when (4) activated to signal an alarm, may operate during the pendency of the alarm condition.
 - Transmission of set-up information for security systems may exceed the transmission duration limits in paragraphs (a)(1) and (a)(2) of this (5) section, provided such transmissions are under the control of a professional installer and do not exceed ten seconds after a manually operated switch is released or a transmitter is activated automatically. Such set-up information may include data.

ISED:

Devices shall comply with the following for momentary operation:

- (a) A manually operated transmitter shall be equipped with a push-to-operate switch and be under manual control at all times during transmission. When released, the transmitter shall cease transmission within no more than 5 seconds of being released.
- A transmitter that has been activated automatically shall cease transmission within 5 seconds of activation. (b)
- Periodic transmissions at regular, predetermined intervals are not permitted, except as specified in Section A.1.4. However, polling or supervision (c) transmissions that determine system integrity of transmitters used in security or safety applications are permitted, provided the total duration of transmission does not exceed 2 seconds per hour for each transmitter.
- (d) Intentional radiators used for radio control during emergencies involving fire, security of goods (e.g. burglar alarms), and safety-of-life, when activated to signal an alarm, may operate during the interval of the alarm condition.

8.5.2 Test summary

Verdict	Pass		
Tested by	Kevin Rose	Test date	September 6, 2021

Observations, settings and special notes 8.5.3

None

Section 8 Test name Specification Testing data FCC 15.231(a) and RSS-210 A.1.1 Technical requirements FCC Part 15 Subpart C and RSS-210, Issue 10

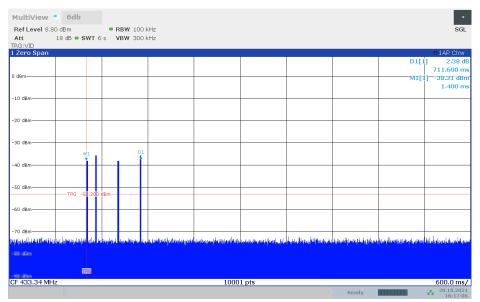
8.5.4 Test data

□ EUT is a manually triggered transmitter

⊠ EUT is an automatically triggered transmitter

 \Box EUT is not a periodic transmitter

 \Box The EUT usage is for radio control purposes during emergencies


 \boxtimes The EUT usage is not for radio control purposes during emergencies

 $\hfill\square$ The EUT transmits set-up information

 \boxtimes The EUT does not transmit set-up information

Automatic Cease Transmission

Frequency, MHz	Transmission time (ms)	Maximum allowable transmission time (ms)	Margin (ms)
433.42	711.6	5000	4288.4

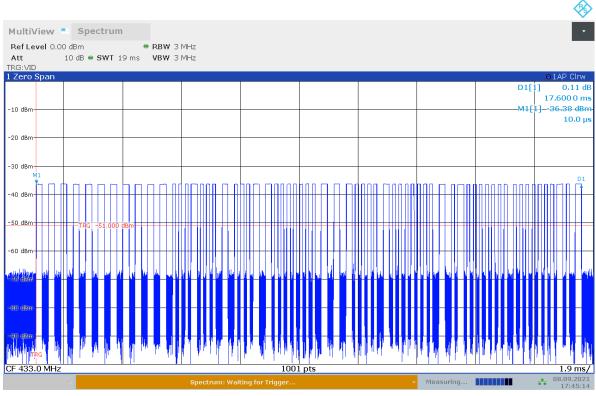
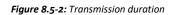

16:17:07 20.10.2021

Figure 8.5-1: Shutoff before 5 seconds



Section 8 Test name Specification Testing data FCC 15.231(a) and RSS-210 A.1.1 Technical requirements FCC Part 15 Subpart C and RSS-210, Issue 10

Test data, continued

17:45:14 08.09.2021

Note: There are 4 transmissions every 13 minutes, with a minimum delay of 100 ms between transmissions. Total Tx time is 17.6 ms With Manchester encoding, The total on time per transmission = 8.8 ms Total on time in 13 minutes (for 4 transmissions) = 8.8 * 4 = 35.2 ms

Section 8Testing dataTest nameFCC 15.231(a) and RSS-210 A.1.1 Technical requirementsSpecificationFCC Part 15 Subpart C and RSS-210, Issue 10

Ref Level -20.		• RB							SG
Att Zero Span	0 dB 🖷 SW	[1800s VB	W 300 kHz						01Pk Clrw
2ero opan								D1[1	
									778.320
-30 dBm								M1[1	-43.82 dE
									288.72
-40 dBm	M1				D1				
	Ĭ				t				
-50 dBm									
-60 dBm									
-70 dBm									
70 dbm									
-80 dBm									
90,d8m-b-r-t-t-t-		in the second	a a constitution and a fi			descent states in			and the second secon
-100 dBm									
-110 dBm									
CF 433.34 MHz				1000	1 nts				180.0
10010414112				1000	1 1000	~	Ready		20.10.20 14:42:
							duy		14:42:

Figure 8.5-3: Transmission duration

Note: 16 pulses in one hour one pulse train equals 35.2 ms. Max total on time in one hour is 563.2 ms.

8.6 FCC 15.231(b) and RSS-210 A.1.2 Field strength of emissions

8.6.1 References, definitions and limits

FCC:

- (b) In addition to the provisions of §15.205 the field strength of emissions from intentional radiators operated under this section shall not exceed the following table.
 - 1) The field strength limits in the table below are specified at a distance of 3 meters. The tighter limits apply at the band edges.
 - 2) Intentional radiators operating under the provisions of this section shall demonstrate compliance with the limits on the field strength of emissions, as shown in the above table, based on the average value of the measured emissions. As an alternative, compliance with the limits in the above table may be based on the use of measurement instrumentation with a CISPR quasi-peak detector. The specific method of measurement employed shall be specified in the application for equipment authorization. If average emission measurements are employed, the provisions in \$15.35 for averaging pulsed emissions and for limiting peak emissions apply. Further, compliance with the provisions of \$15.205 shall be demonstrated using the measurement instrumentation specified in that section.
 - 3) The limits on the field strength of the spurious emissions in the table below are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in \$15.209, whichever limit permits a higher field strength.

ISED:

a. The field strength of emissions from momentarily operated intentional radiators shall not exceed the limits in table below, based on the average value of the measured emissions. The requirements of the "Pulsed operation" section of RSS-Gen apply for averaging pulsed emissions and limiting peak emissions.

Alternatively, compliance with the limits in the table below may be demonstrated using an International Special Committee on Radio Interference (CISPR) quasi-peak detector.

b. Unwanted emissions shall be 10 times below the fundamental emissions field strength limits in the table below or comply with the limits specified in RSS-Gen, whichever is less stringent.

Fundamental frequency	Field strength o	Field strength of fundamental		Field strength of spurious emissions	
(MHz)	(μV/m)	(dBµV/m)	(μV/m)	(dBµV/m)	
40.66-40.70 ¹	2,250	67.0	225	47.0	
70–130	1,250	61.9	125	41.9	
130–174	1,250 to 3,750*	61.9 to 71.5*	125 to 375*	41.9 to 51.5*	
174–260 ²	3,750	71.5	375	51.5	
260-470 ²	3,750 to 12,500*	71.5 to 81.9*	375 to 1,250*	51.5 to 61.9*	
Above 470	12,500	81.9	1,250	61.9	

Table 8.6-1: Field strength limits

* Linear interpolation with frequency F in MHz:

For 130–174 MHz: Field Strength (μV/m) = (56.82 × F) – 6136

For 260–470 MHz: Field Strength (μV/m) = (41.67 × F) – 7083

Notes: ¹*The levels applicable to FCC only.*

²Frequency bands 225–328.6 MHz and 335.4–399.9 MHz are designated for the exclusive use of the Government of Canada. Manufacturers should be aware of possible harmful interference and degradation of their licence-exempt radio equipment in these frequency bands.

Table 8.6-2: FCC §15.209 and RSS-Gen – Radiated emission limits

Frequency,	Field strength of emissions		Measurement distance, m
MHz	μV/m	dBµV/m	
0.009-0.490	2400/F	67.6 – 20 × log10(F)	300
0.490-1.705	24000/F	87.6 – 20 × log ₁₀ (F)	30
1.705-30.0	30	29.5	30
30–88	100	40.0	3
88–216	150	43.5	3
216–960	200	46.0	3
above 960	500	54.0	3

Notes: In the emission table above, the tighter limit applies at the band edges.

For frequencies above 1 GHz the limit on peak RF emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test


Table 8.6-3: ISED restricted frequency bands

MHz	MHz	MHz	GHz
0.090-0.110	12.57675-12.57725	399.9–410	7.25–7.75
0.495-0.505	13.36–13.41	608–614	8.025-8.5
2.1735-2.1905	16.42-16.423	960–1427	9.0–9.2
3.020-3.026	16.69475-16.69525	1435–1626.5	9.3–9.5
4.125-4.128	16.80425-16.80475	1645.5-1646.5	10.6–12.7
4.17725-4.17775	25.5-25.67	1660–1710	13.25–13.4
4.20725-4.20775	37.5–38.25	1718.8–1722.2	14.47–14.5
5.677-5.683	73–74.6	2200–2300	15.35–16.2
6.215-6.218	74.8–75.2	2310–2390	17.7–21.4
6.26775-6.26825	108–138	2483.5-2500	22.01-23.12
6.31175–6.31225	149.9–150.05	2655–2900	23.6–24.0
8.291-8.294	156.52475-156.52525	3260-3267	31.2-31.8
8.362-8.366	156.7–156.9	3332–3339	36.43–36.5
8.37625-8.38675	162.0125-167.17	3345.8-3358	
8.41425-8.41475	167.72–173.2	3500–4400	Above 38.6
12.29–12.293	240–285	4500–5150	Abuve 38.6
12.51975-12.52025	322–335.4	5350-5460	

Note: Certain frequency bands listed in this table and above 38.6 GHz are designated for licence-exempt applications. These frequency bands and the requirements that apply to related devices are set out in the 200 and 300 series of RSSs.

Table 8.6-4: FCC restricted frequency bands

N 411-		5 ALL -	011-
MHz	MHz	MHz	GHz
0.090-0.110	16.42–16.423	399.9–410	4.5-5.15
0.495-0.505	16.69475-16.69525	608–614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960–1240	7.25–7.75
4.125-4.128	25.5–25.67	1300–1427	8.025-8.5
4.17725-4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725-4.20775	73–74.6	1645.5-1646.5	9.3–9.5
6.215-6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775-6.26825	108–121.94	1718.8-1722.2	13.25–13.4
6.31175-6.31225	123–138	2200–2300	14.47–14.5
8.291-8.294	149.9–150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7–21.4
8.37625-8.38675	156.7-156.9	2690–2900	22.01-23.12
8.41425-8.41475	162.0125–167.17	3260–3267	23.6–24.0
12.29–12.293	167.72-173.2	3332–3339	31.2–31.8
12.51975-12.52025	240–285	3345.8–3358	36.43–36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36–13.41			

8.6.2 Test summary

Verdict	Pass		
Tested by	Kevin Rose	Test date	September 14, 2021

8.6.3 Observations, settings and special notes

The spectrum was searched from 30 MHz to the $10^{\mbox{th}}$ harmonic.

Radiated measurements were performed at a distance of 3 m.

Average radiated emissions were obtained by subtracting duty cycle / correction factor from the peak measurement results.

Spectrum analyser settings for radiated measurements within restricted bands below 1 GHz:

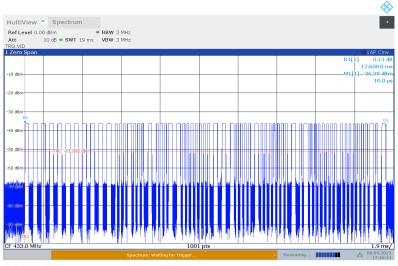
Resolution bandwidth	100 kHz
Video bandwidth	300 kHz
Detector mode	Peak
Trace mode	Max Hold

Spectrum analyser settings for peak radiated measurements within restricted bands above 1 GHz:

Resolution bandwidth	1 MHz
Video bandwidth	3 MHz
Detector mode	Peak
Trace mode	Max Hold

Section 8 Test name Specification Testing data FCC 15.231(b) and RSS-210 A.1.2 Field strength of emissions FCC Part 15 Subpart C and RSS-210, Issue 10

8.6.4 Test data


Duty cycle/average factor calculations

\$15.35(c) When the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed; the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds.

Duty cycle or average factor = $20 \times \log_{10} \left(\frac{T x_{100_{ms}}}{100_{ms}} \right)$

= 20 × log10(8.9/100)

= -21.0 (20 dB duty cycle is the maximum allowable peak to average ratio)

17:45:14 08.09.2021

Figure 8.6-1: Transmission pulse

Note: 23 200us pulse and 43 100us pulses total on time is 8.9ms

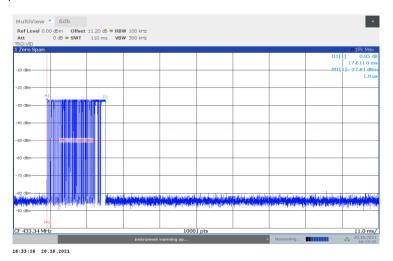
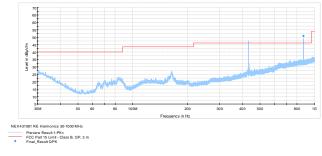


Figure 8.6-2: Transmission pulse



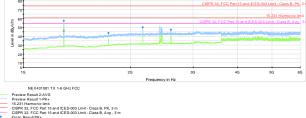

Section 8 Test name Specification Testing data FCC 15.231(b) and RSS-210 A.1.2 Field strength of emissions FCC Part 15 Subpart C and RSS-210, Issue 10

Table 8.6-5: Radiated field strength measurement results

Peak field				Average field			
Frequency, MHz	strength, dBμV/m	Peak limit, dBμV/m	Margin, dB	Duty cycle factor, dB	strength, dBμV/m	Average limit, dBμV/m	Margin, dB
433.4	100.65	100.8	0.15	20	80.65	80.8	0.15
866.8	50.7	80.8	30.1	20	30.7	60.8	30.1
1300.3	57.45	80.8	23.35	20	37.45	60.8	23.35
1733.7	43.76	80.8	37.04	20	23.76	60.8	37.04
2167.1	50.06	80.8	30.74	20	30.06	60.8	30.74
2600.5	47.26	80.8	33.54	20	27.26	60.8	33.54

Notes: Field strength includes correction factor of antenna, cable loss, amplifier, and attenuators where applicable.

Final_Result PK+
 Final_Result CAV

Figure 8.6-3: Spurious emissions below 1 GHz

Figure 8.6-4: Spurious emissions above 1 GHz

8.7 FCC 15.231(c) and RSS-210 A.1.3 Emission bandwidth of momentary signals

8.7.1 References, definitions and limits

FCC:

The bandwidth of the emission shall be no wider than 0.25 % of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5 % of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

ISED:

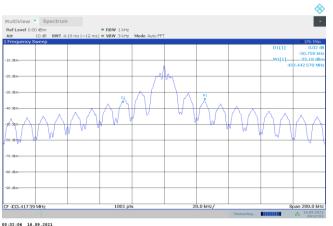
The 99% bandwidth of momentarily operated devices shall be less or equal to 0.25% of the centre frequency for devices operating between 70 MHz and 900 MHz. For devices operating above 900 MHz, the 99% bandwidth shall be less or equal to 0.5% of the centre frequency.

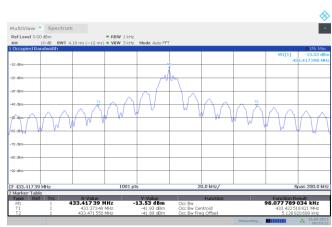
8.7.2	Test summary			
		_		
Verdict		Pass		
Tested by		Kevin Rose	Test date	September 13, 2021
8.7.3	Observations, settin	ngs and special notes		
		25.1.1		
	% of 433.42 MHz is 108. nalyser settings:	35 kHz		
Spectruma	maryser settings.			
Resolution I	bandwidth ≥1	% of emission bandwidth		
Video band	width ≥ 3	×RBW		
Frequency s	span Wid	der than emission bandwidth		
Detector me	ode Pea	lk		

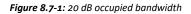
8.7.4 Test data

Table 8.7-1: 20 dB bandwidth measurement result

20 dB bandwidth, kHz	Limit, kHz	Margin, kHz
50.75	108.35	57.60

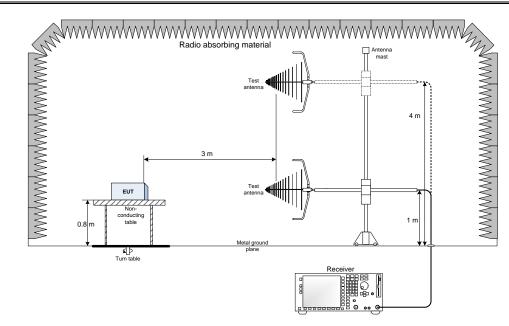

Table 8.7-2: 99 % occupied bandwidth measurement result


99 % occupied bandwidth, kHz	Limit, kHz	Margin, kHz
98.08	108.35	10.27

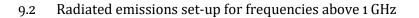

Section 8 Test name Specification

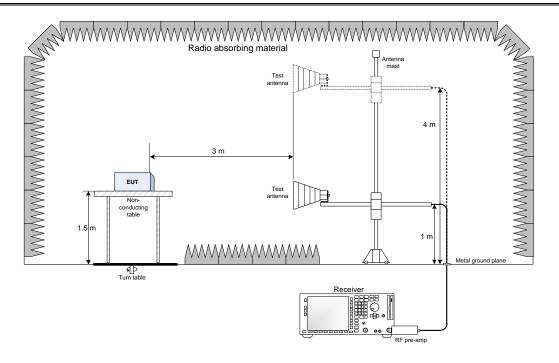
Testing data FCC Clause 15.231(c) and RSS-210 A.1.3 Emission bandwidth of momentary signals FCC Part 15 Subpart C and RSS-210, Issue 10

00:32:04 16.09.2021

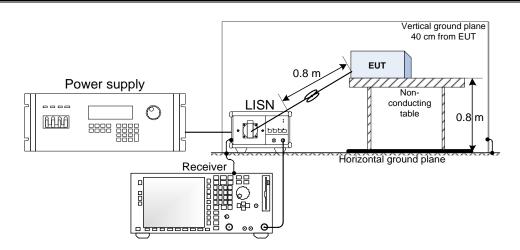


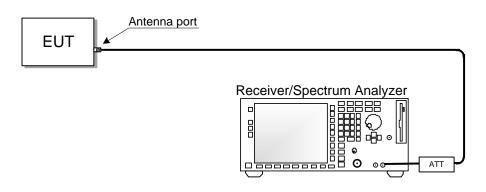
00:33:13 16.09.2021


Figure 8.7-2: 99 % occupied bandwidth


Section 9. Block diagrams of test set-ups

Nèmko


9.1 Radiated emissions set-up for frequencies below 1 GHz



9.3 Conducted emissions set-up

9.4 Antenna port set-up

